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Abstract

Let G be a group. Ghumde and Ghate [7] in 2015 introduced the IA-central subgroup S(G) and they
proved that if G is a group with G/S(G) finite, then so is IA(G) and G′. The IA-central subgroup is
located between the absolute center and the center of the group. In this paper, we study the conditions
in which S(G) is equal to each of these two subgroups. We also state the conditions for the equality of
S(G) with G and when S(G) is non-trivial. At the end of this paper, we provide a converse to Ghumde
and Ghate [7] theorem.
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1 Introduction

The center of a group and their subgroups have interesting properties, Hence the subgroups have been the
idea of many researchers articles. Let G be a group and p be a prime. Let us denote by Z(G), G′, exp(G),
π(G), d(G), r(G), T(G), Hom(G, H), Aut(G) and Inn(G), respectively the centre, the commutator subgroup,
the exponent, the set of primes dividing the order of G, the rank, the torsion-free rank, the torsion subgroup
of G, the group of homomorphisms of G into an abelian group H, the full automorphism group and the
inner automorphisms. Let Gp

n
= 〈gpn | g ∈ G〉. Also,

L(G) =
{
g ∈ G

∣∣ g−1α(g) = 1, ∀ α ∈ Aut(G)
}
,

IA(G) =
{
α ∈ Aut(G)

∣∣ g−1α(g) ∈ G′, ∀ g ∈ G
}
,

IAZ(G) =
{
α ∈ Aut(G)

∣∣ g−1α(g) ∈ G′, α(z) = z, ∀ g ∈ G, ∀ z ∈ Z(G)
}
,

are the absolute center subgroup, the group of all automorphisms of G which induce identity map on G/G′

and the group of those IA-automorphisms which fix the centre elementwise, respectively.
A metabelian group is a group whose commutator subgroup is abelian. A metacyclic group is a group G
having a cyclic normal subgroup N such that the quotient G/N is also cyclic. A homocyclic group is a direct
product of one or more pairwise isomorphic cyclic groups.
Let G be a finite group and N be non-trivial proper normal subgroup of G. The pair (G; N) is called a
Camina pair if xN ⊆ xG for all xG ∈ G \ N where xG denotes the conjugacy class of x in G. A group G
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is called a Camina group if (G,G′) is a Camina pair. So if G is a Camina group then G′ = [x,G] for all
x ∈ G \G′.

On the lines of results of Schur and Hegarty, Ghumde and Ghate [7] in 2015 introduced the S(G) subgroup
as follows:

S(G) =
{
g ∈ G | g−1α(g) = [g, α] = 1, α ∈ IA(G)

}
.

They showed that for a finite p-group G, S(G) is non-trivial and L(G) E S(G) E Z(G). Also, if G/S(G) is
finite, then so is G′ and IA(G).

In 2020, Azhdari [4] named the subgroup S(G), LG′(G) and achieved the following results:

1) If G be a nilpotent group of class 2, then

a) G′ 6 S(G) and thus G/S(G) is abelian.

b) exp
(
T
(
G/S(G)

)) ∣∣∣ exp(T (G′)
)
.

c) If G is a torsion-free group, then so are G/Z(G) and G/S(G).

d) If G is a torsion group, then so is G/S(G).

2) Let G be a finite non-abelian p-group of class 2 and exp(G′) = pn, then

a) S(G) = G′Gp
n
.

b) IA(G)=Inn(G) if and only if G′ is cyclic and Z(G) = S(G) = G′Gp
n
.

3) Let G be a finitely generated nilpotent group of class 2 with finite cyclic commutator, G′ = 〈b〉. Let
G/Z(G) = 〈x1〉 × · · · × 〈xd〉 where 〈x〉 denotes xZ(G). Assign a skew-symmetric matrix AG = (aij) to
G where aij is defined by the equation [xi, xj ] = bij for all 1 ≤ i, j ≤ d. Then IA(G)=Inn(G) if and
only if one of the following conditions holds:

a) G′ is finite and Z(G)=S(G).

b) G′ is infinite, r
(
Z(G)

)
= 1 and det(AG) = 1.

2 Main results

In this section, we study the conditions in which S(G) is equal to L(G) and Z(G). Also, We investigate
conditions where S(G)=G and S(G) is non-trivial. The last theorem states the converse of Ghumde and
Ghate [7] theorem and prove it.

The following proposition clearly states the conditions of equality of S(G) and L(G).

Proposition 2.1. For a group G, S(G)=L(G) if

1) G be a complete group, i.e. G = G′.

2) [G : G′] = 2, because then IA(G)=Aut(G) [7].

In the following, we will study the conditions that S(G)=Z(G). According to the definition of S(G) and
Z(G), this relationship will be established if IA(G)=Inn(G). Therefore, we consider groups that have this
condition. In other words, G is semi-complete.

Proposition 2.2. For a group G, S(G)=Z(G) if

1) G be the wreath product of a infinite cyclic group by another [6].

2) G be a free metabelian group of rank 2 [12].
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3) G be a free product of two non-trivial abelian groups [1].

4) G′ be cyclic and IA(G) = IAZ(G) [2].

5) G be a finite p-group of class 2 where Hom(G/G′, G′) ∼= G/Z(G) [2].

6) G be a finite p-group of class 2, G′ is cyclic and Hom
(
G/Z(G), G′

) ∼= Hom(G/G′, G′) [2].

7) G be a metabelian 2-generated finite p-group where |G| = |G′|2|Z(G)| [2].

8) G be a finite 2-generated p-group of class at most 4 where [G : Z(G)] = |G′|2 [2].

9) G be a finite 2-generated p-group(or nilpotent group) of class 2 [2]([14]).

10) G be a non-abelian group of order p4, G/Z(G) ∼= Cp × Cp and G/G′ ∼= Cp × Cp2 [2].

11) G be a non-abelian group of order p5 and one of the following conditions holds[2]:

a) Z(G) ∼= Cp and G/G′ ∼= Cp × Cp2.

b) G/Z(G) ∼= Cp × Cp and G/G′ ∼= Cp2 × Cp2.

c) G/Z(G) ∼= Cp × Cp and G/G′ ∼= Cp3 × Cp.

12) G be a extra-special group [8].

13) G be a p-group with a cyclic maximal subgroup and |G| = 23 or
G ∼= M(pn) = 〈x, y | xpn−1

= yp = 1, y−1xy = x1+p
n−2〉 [8].

14) G be a finite p-group of class 2, G′ is cyclic and Z(G) = G′Gp
n

where |G′| = pn [14].

15) G be a finite p-group such that G′ is cyclic,
(
G,Z(G)

)
is a Camina pair and G is isomorphic to a

central product A ∗X∗np3 for some n ≥ 0 and an odd prime p where

a) A is a 2-generator subgroup which is either a metacyclic group or A = 〈a〉〈b〉〈c〉, [a, c] = [b, c] = 1,

[a, b] = cbp
k

where k ≥ 1,

b) Xp3 is non-abelian finite p-group of order p3 and exponent p and

c) X∗n is the iterated central product defined by X∗n = X ∗X∗(n−1) with X∗1 = X [14].

16) G be an abelian group [3].

17) G ba a finite p-group of class 2 and G′ is cyclic and G is Camina. [3].

18) G be a finitely generated nilpotent group of class 2 and G′ is cyclic. if G′ is infinite then det(AG) = 1
Which was introduced in (3) of Azhdari theorems at the end of Section 1 [3].

19) G be a finitely generated nilpotent group of class 2 with infinite cyclic commutator, r
(
Z(G)

)
= 1 and

det(AG) = 1 Which was introduced in (3) of Azhdari theorems at the end of Section 1 [3].

20) G be a finite non-abelian p-group of class 2, exp(G′) = pn, G′ is cyclic and Z(G) = S(G) = G′Gp
n

[4].

21) G be a finitely generated nilpotent group of class 2 with cyclic commutator and one of the following
conditions holds[4]:

a) G′ is finite and Z(G)=S(G).

b) G′ is infinite, r
(
Z(G)

)
= 1 and det(AG) = 1 Which was introduced in (3) of Azhdari theorems

at the end of Section 1.
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22) G be a finite p-group of class 2, G/Z(G) ∼=
∏m
i=1Cpai and G/G′ ∼=

∏n
j=1Cpbj where a1 ≥ a2 ≥ · · · ≥ am

and b1 ≥ b2 ≥ · · · ≥ bn are positive integers. G′ is cyclic, d
(
G/Z(G)

)
= d(G/G′) and either G/Z(G)

is homocyclic or ai = a1 for 1 ≤ i ≤ t and bi = ai for t ≤ i ≤ n where t is the smallest positive integer
such that bt ≥ a1 [13].

23) G be a finitely generated nilpotent group of class 2, G/Z(G) ∼= A× Za, G/G′ ∼= B × Zb, G′ ∼= C × Zc,
where A ∼=

∏d
i=1

∏mi
j=1Cp

αij
i

, π(A) = {p1, p2, . . . , pd}, α11 ≥ α12 ≥ · · · ≥ α1m1, α21 ≥ α22 ≥ · · · ≥
α2m2, . . ., αd1 ≥ αd2 ≥ · · · ≥ αdmd, B ∼=

∏e
i=1

∏ni
j=1Cp

bij
i

, π(B) = {p1, p2, . . . , pe}, β11 ≥ β12 ≥ · · · ≥
β1n1, β21 ≥ β22 ≥ · · · ≥ β2n2, . . ., βe1 ≥ βe2 ≥ · · · ≥ βene, A, B, C are respective torsion parts and a,
b, c are respective torsion-free ranks of G/Z(G), G/G′ and G′. Also one of the following conditions
holds[13]:

i) G is torsion-free, G′ is cyclic and r
(
G/Z(G)

)
= r(G/G′).

ii) G is not torsion-free and one of the following four conditions holds:

a) G is finite, mi = ni for 1 ≤ i ≤ d, G′ is cyclic and for each 1 ≤ i ≤ d either
(
G/Z(G)

)
pi

is

homocyclic or αi1 = αiti for i1 ≤ iti ≤ i(ri − 1) and βiti = αiti for iri ≤ iti ≤ ini where iri
is the smallest positive integer between i1 and ini such that βiri < αi1.

b) G′ ∼= Z and r
(
G/Z(G)

)
= r(G/G′).

c) G′ is torsion, G/G′ is torsion-free and A ∼= Cb.

d) G/Z(G) and G′ ∼= C × Z are mixed groups, G/G′ is torsion-free, A ∼= Cb and r
(
G/Z(G)

)
=

r(G/G′).

24) G be a finite p-group such that Z(G) ⊆ G′, IA
(
G/Z(G)

)
= Inn

(
G/Z(G)

)
and CAut(G)

(
Inn(G)

)
=

Z
(
Inn(G)

)
[10].

There may be other conditions for equalization S(G)=Z(G). The following examples shows that every
IA-automorphism is not necessarily inner automorphism and the equality S(G)=Z(G) does not always hold.

Example 2.3. 1) Bachmuth [5] has shown that the IA-group of a free metabelian group of rank two is
equal to its inner automorphism group. He has also shown that this is not the case when the rank is
larger than two.

2) Taheri et. al. [15] considered the group G = 〈a, b, x | [a, x] = [b, x] = 1, [a, b] = xk, k 6= 1〉 and
they showed that IAZ-automorphism α defined by α(a) = axk, α(b) = bxk, α(x) = x is a non-inner
automorphism, but G′ = 〈xk〉, Z(G) = S(G) = 〈x〉.

3) Ghumde and Ghate [8] considered the group G = H ×K where groups H and K given by
H = 〈x, y | x4 = y2 = 1, yxy−1 = x−1〉, K = 〈z, w | z4 = w2 = 1, wzw−1 = z−1〉. The map
f : H × K −→ H × K which is defined as follows x −→ xz2, y −→ yz2, z −→ zx2, w −→ wx2 is
an IAZ-automorphism which is not an inner automorphism. Here G′ = 〈x2, z2〉, Z(G) = 〈x, z〉 and
S(G) = e.

Theorem 2.4. Let G be an abelian group, then S(G)=G.

Proof. Because G is abelian, then G′ = e, IA(G) = 〈1〉. hence S(G)=G.

Now, we study the conditions in which S(G) is non-trivial. In the above theorem, we saw that for abelian
groups S(G)=G, therefore, in the following, we consider non-abelian groups.

Theorem 2.5. Let G be a group and H 6 G, then H 6 S(G) if

1) Aut(G) = CAut(G)(H). The converse of this part is also true, i.e.
H 6 S(G) ⇐⇒ Aut(G) = CAut(G)(H).

2) G be a finite group and H be a characteristic subgroup of prime order p such that p be the smallest
prime divisor of |Aut(G)|.
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3) Aut(G) be a perfect group and H be a cyclic characteristic subgroup of G.

Proof. Given that L(G) 6 S(G), the proof easily follow from [11] lemma 2.4(iv), corollary 3.5 and 3.7
respectively.

Theorem 2.6. Let G be a group, Aut(G) be a finite p-group and H be a finite characteristic subgroup of G
such that p

∣∣|H|, then H ∩ S(G) 6= 〈1〉.

Proof. Because H is a characteristic subgroup of G, then this equivalence relation yields a partition of H
and each cell in the partition arising from an equivalence relation is equivalence class. According to lemma
2.5 [11], there is 1 6= h0 ∈ H element such that the equivalence class is of order 1. So we have α(h0) = h0,
for every α ∈ Aut(G). Thus 1 6= h0 ∈ S(G) ∩H and this completes the proof.

Corollary 2.7. If G be a finite group such that Aut(G) is a p-group, then S(G) 6= 〈1〉.

Theorem 2.8 (MacHale[9]). Let G be a finite group such that Aut(G) is nilpotent. If G is not cyclic of odd
order, then G contains a non-trivial element which is left fixed by every automorphism of G.

Corollary 2.9. Let G be a finite group such that Aut(G) is nilpotent, then S(G) 6= 〈1〉.

Theorem 2.10 (The converse of Ghumde and Ghate [7] theorem). Let G be an arbitrary group. If G′ and
IA(G) are both finite, then so is G/S(G).

Proof. We define CG(α) = {g ∈ G | [g, α] = 1}, for every α ∈ IA(G). Then [G : CG(α)] is finite, since
G′ is finite. But S(G) =

⋂
α∈IA(G)CG(α) and since this is a finite intersection, it follows that G/S(G) is

finite.
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