2-transitive permutation groups with abelian stabilizers having constant movement

Zeinab Foruzanfar
Imam Khomeini International University - Buin Zahra Higher Education Center of Engineering and Technology, Qazvin, Iran
Mehdi Rezaei ${ }^{1}$
Imam Khomeini International University - Buin Zahra Higher Education Center of Engineering and Technology, Qazvin, Iran

Abstract

In this paper, we determine the structure of 2-transitive permutation groups with abelian point stabilizers having constant movement.

Keywords: 2-transitive, affine group, cycle, movement
Mathematics Subject Classification [2010]: 20B05

1 Introduction

Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a natural number. If for a subset Γ of Ω the size $\left|\Gamma^{g}-\Gamma\right|$ is bounded, for $g \in G$, the movement of Γ is defined as

$$
\operatorname{move}(\Gamma):=\max _{g}\left|\Gamma^{g}-\Gamma\right| .
$$

If move $(\Gamma) \leq m$ for all $\Gamma \subseteq \Omega$, then G is said to have bounded movement m and the movement of G is defined as the

$$
\operatorname{move}(G):=\max _{\Gamma, g}\left|\Gamma^{g}-\Gamma\right|
$$

This notion was introduced in [5]. Similarly, for each $g \in G$, the movement of g is defined as:

$$
\operatorname{move}(g):=\max _{\Gamma}\left|\Gamma^{g}-\Gamma\right| .
$$

If all non-identity elements of G have the same movement, then we say that G has constant movement (see [2]). Clearly, every permutation group with constant movement m has bounded movement m. By Theorem 1 of [5], if G has bounded movement m, then Ω is finite, and its size is bounded by a function of m.

A permutation group G on Ω is called k-transitive, if for every two ordered k-tuples $\alpha_{1}, \ldots, \alpha_{k}$ and $\beta_{1}, \ldots, \beta_{k}$ of points of Ω (with $\alpha_{i} \neq \alpha_{j}$ for $i \neq j$) there exists $g \in G$ which takes α_{i} into β_{i} : $\alpha_{i}^{g}=\beta_{i}$ $(i=1, \ldots, k)$. As a well-known result, a 2 -transitive group G on Ω is primitive and for any $\alpha \in \Omega$, the stabilizers G_{α} are maximal subgroups of G which act transitively on the set $\Omega-\{\alpha\}$. A Frobenius group G

[^0]on Ω is a non-regular transitive permutation group in which only the identity element fixes more than one point, i.e., $G_{\alpha \beta}=1$, for any two points $\alpha, \beta \in \Omega$. It is proved that a Frobenius group G is the semi-direct product $K \rtimes H$, with normal subgroup K. The main result of [4] states that a 2 -transitive permutation group G with abelian point stabilizer is isomorphic to the affine group $A G L_{1}(p)$, for a prime number p. We know that the affine group $A G L_{1}(p)$ is the Frobenius group $\mathbb{Z}_{p} \rtimes \mathbb{Z}_{p-1}$.

The goal of this paper is to find the structure of 2 -transitive permutation groups G with abelian point stabilizers G_{α} having constant movement m. Note that for $x \in \mathbb{R},\lfloor x\rfloor$ is the integer part of x.

2 Examples and preliminaries

In this section, we give some preliminary results that will be used in the proof of our main results. First, we present a way to calculate the movement of elements of a permutation group.
Let $1 \neq g \in G$ and suppose that g in its disjoint cycle representation has s (s is a positive integer) nontrivial cycles of lengths l_{1}, \ldots, l_{s}, say. We might represent g as

$$
g=\left(a_{1} a_{2} \ldots a_{l_{1}}\right)\left(b_{1} b_{2} \ldots b_{l_{2}}\right) \ldots\left(z_{1} z_{2} \ldots z_{l_{s}}\right)
$$

Let $\Gamma(g)$ denote a subset of Ω consisting of $\left\lfloor l_{i} / 2\right\rfloor$ points from the $i^{\text {th }}$ cycle, for each i, chosen in such a way that $\Gamma(g)^{g} \cap \Gamma(g)=\emptyset$. For example, we could choose

$$
\Gamma(g)=\left\{a_{2}, a_{4}, \ldots, a_{k_{1}}, b_{2}, b_{4}, \ldots, b_{k_{2}}, \ldots, z_{2}, z_{4}, \ldots, z_{k_{s}}\right\}
$$

where $k_{i}=l_{i}-1$ if l_{i} is odd and $k_{i}=l_{i}$ if l_{i} is even. Note that $\Gamma(g)$ is not uniquely determined as it depends on the way each cycle is written. For any set $\Gamma(g)$ of this kind, we say that $\Gamma(g)$ consists of every second point of every cycle of g. From the definition of $\Gamma(g)$ we see that

$$
\left|\Gamma(g)^{g}-\Gamma(g)\right|=|\Gamma(g)|=\sum_{i=1}^{s}\left\lfloor l_{i} / 2\right\rfloor
$$

The next lemma shows that this quantity is an upper bound for $\left|\Gamma^{g}-\Gamma\right|$ for an arbitrary subset Γ of Ω.
Lemma 2.1. (Lemma 2.1 of [3]) Let G be a permutation group on a set Ω and suppose that $\Gamma \subseteq \Omega$. Then for each $g \in G,\left|\Gamma^{g}-\Gamma\right| \leq \sum_{i=1}^{s}\left\lfloor\frac{l_{i}}{2}\right\rfloor$, where l_{i} is the length of the $i^{\text {th }}$ cycle of g and s is the number of non-trivial cycles of g in its disjoint cycle representation. This upper bound is attained for $\Gamma=\Gamma(g)$ defined above.

Remark 2.2. ([1]) Let g be an element of a permutation group G on a set Ω. Assume that the set Ω is the disjoint union of G-invariant sets Ω_{1} and Ω_{2}. Then every subset Γ of Ω is a disjoint union of subsets $\Gamma_{i}=\Gamma \cap \Omega_{i}$ for $i=1,2$. Let g_{i} be the permutation on Ω_{i} induced by g for $i=1,2$. Since $\left|\Gamma^{g}-\Gamma\right|=\left|\Gamma_{1}^{g_{1}}-\Gamma_{1}\right|+\left|\Gamma_{2}^{g_{2}}-\Gamma_{2}\right|$, we have:

$$
\operatorname{move}_{\Omega}(g)=\sum_{i=1}^{2} \max \left\{\left|\Gamma_{i}^{g_{i}} \backslash \Gamma_{i}\right| \mid \Gamma_{i} \subseteq \Omega_{i}\right\}=\operatorname{move}_{\Omega_{1}}\left(g_{1}\right)+\operatorname{move}_{\Omega_{2}}\left(g_{2}\right)
$$

In [2], the construction of a transitive permutation action of a group G which is a semi-direct product of its two subgroups is given as below.

Let $K=\langle k\rangle$ be cyclic of order n and $H=\langle h\rangle$ be cyclic of order m and suppose r is an integer such that $r^{m} \equiv 1(\bmod n)$. For $i=1, \ldots, m$, let $\left(h^{i}\right) \theta: K \longrightarrow K$ be defined by $k^{\left(h^{i}\right) \theta}=k^{r^{i}}$ for k in K. It is straightforward to verify that each $\left(h^{i}\right) \theta$ is an automorphism of K, and that θ is a homomorphism from H to $A u t(K)$. Hence the semi-direct product $G=K \rtimes H$ (with respect to θ) exists and if $K=\langle k\rangle$, then G is given by the relations:

$$
k^{n}=1, \quad h^{m}=1, \quad h^{-1} k \cdot h=k^{r}, \quad \text { with } \quad r^{m} \equiv 1 \quad(\bmod n)
$$

Here every element of G is uniquely expressible as $k^{i} h^{j}$, where $0 \leq i \leq n-1,0 \leq j \leq m-1$. The semidirect products of this type (as a permutation group on a set Ω of size n), provide examples of transitive permutation groups where every non-identity element has constant movement. Note that, if $n=p$, a prime, then by Theorem 3.6.1 of [6], this group G is a subgroup of the Frobenius group $A G L_{1}(p)=\mathbb{Z}_{p} \rtimes \mathbb{Z}_{p-1}$.

Lemma 2.3. (Lemma 2.1 of [2]) Let G be a semi-direct product $\mathbb{Z}_{p} \rtimes \mathbb{Z}_{2^{a}}$ denote a group defined as above of order $p .2^{a}$ where $2^{a} \mid(p-1)$ for some $a \geq 1$. Then G acts transitively on a set Ω of size p and in this action all non-identity elements of G have the same movement equal to $(p-1) / 2$.

3 Main results

In this section, we give our main result as follows.
Theorem 3.1. Let G be a 2-transitive permutation group on a set Ω with abelian point stabilizers. If G has constant movement m, for a natural number m, then $|\Omega|=p$ and G is isomorphic to the affine group AGL $L_{1}(p)=\mathbb{Z}_{p} \rtimes \mathbb{Z}_{p-1}$, for some odd prime p, in which $p-1$ is a power of 2. Also, the movement of G is equal to $m=\frac{p-1}{2}$.

At the end, we verify the movement of these affine groups for $p=5,17$ in the following two examples.
Example 3.2. Consider the affine group $G=A G L_{1}(5)=\mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$ in its 2-transitive permutation representation. Then $G=\langle k, h\rangle$, where $k:=(12345)$ and $h:=(2354)$ and $h^{-1} k h=k^{2}$. In this action, every element of G has one cycle of length 5 or one cycle of length 4 or two cycles of length 2 . So, G has constant movement 2.

Example 3.3. Let $G=A G L_{1}(17)=\mathbb{Z}_{17} \rtimes \mathbb{Z}_{16}$ be the affine group in its 2-transitive permutation representation. Then $G=\langle k, h\rangle$, where $k:=(1 \ldots 17)$ and $h:=\left(\begin{array}{l}241011146161217159851337) \text { and } 17\end{array}\right.$ $h^{-1} k h=k^{3}$. In this action, every element of G has one cycle of length 17 or one cycle of length 16 or two cycles of length 8 or four cycles of length 4 or eight cycles of length 2 . So, G has constant movement 8 .

References

[1] M. Alaeiyan, M. Rezaei, Intransitive permutation groups with bounded movement having maximum degree, Math Rep 13(63) (2011), 109-115.
[2] M. Alaeiyan, H.A. Tavallaee, Permutation groups with the same movement, Carpathian J Math 25 (2009), 147-156.
[3] A. Hassani, M. Alaeiyan (Khayaty), E.I. Khukhro, C.E. Praeger, Transitive permutation groups with bounded movement having maximal degree, J Algebra 214 (1999), 317-337.
[4] V.D. Mazurov, 2-Transitive permutation groups, Sib Math J 31 (1990), 615-617.
[5] C.E. Praeger, On permutation groups with bounded movement, J Algebra 144 (1991), 436-442.
[6] T. Tsuzuku, Finite Groups and Finite Geometries, Cambridge University Press, 1982.
Email: zforouzanfar@gmail.com, z.forozanfar@bzeng.ikiu.ac.ir
Email: mehdrezaei@gmail.com, m.rezaei@bzeng.ikiu.ac.ir

[^0]: ${ }^{1}$ speaker

