On the commuting graphs of some finite AC-groups

Zeinab Foruzanfar
Imam Khomeini International University - Buin Zahra Higher Education Center of Engineering and Technology, Qazvin, Iran

Abstract

Let G be a finite group. The commuting graph of a non-abelian group G, denoted by $\Gamma(G)$, is a simple undirected graph whose vertex set is $G-Z(G)$, and two vertices x and y are adjacent if and only if $x y=y x$. A group G is called an AC-group if $C_{G}(x)$ is abelian for all $x \in G-Z(G)$. In this paper, the Laplacian spectrum, signless Laplacian spectrum and normalized Laplacian spectrum of the commuting graphs of some finite AC-groups are computed.

Keywords: Commuting graph, normalized Laplacian spectrum, signless Laplacian spectrum
Mathematics Subject Classification [2010]: 05C25, 05C50, 20D60

1 Introduction

A graph Γ is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of Γ called the edges. The vertex-set of Γ is denoted by $V(\Gamma)$, while the edge-set is denoted by $E(\Gamma)$. All graphs in this paper are assumed to be simple, finite and undirected. The adjacency matrix $A(\Gamma)=\left(a_{i j}\right)$ is an n-square $(0,1)$-matrix defined as $a_{i j}=1$ if and only if v_{i} and v_{j} are adjacent, where $V(\Gamma)=\left\{v_{1}, \ldots, v_{n}\right\}$. The degree of vertex v_{i} is denoted by $d_{\Gamma}\left(v_{i}\right)$ and the degree matrix denoted by $D(\Gamma)$ is defined as $D(\Gamma)=\operatorname{diag}\left(d_{\Gamma}\left(v_{1}\right), d_{\Gamma}\left(v_{2}\right), \ldots, d_{\Gamma}\left(v_{n}\right)\right)$, which is the diagonal matrix of vertex degrees. Then, the Laplacian, signless Laplacian and normalized Laplacian matrices of a graph Γ is defined as $L(\Gamma)=D(\Gamma)-A(\Gamma), Q(\Gamma)=D(\Gamma)+A(\Gamma)$ and $\mathcal{L}(\Gamma)=\left(\mathcal{L}_{i j}\right)$, respectively, where

$$
\mathcal{L}_{i j}= \begin{cases}1 & i=j \text { and } d_{\Gamma}\left(v_{i}\right) \neq 0 \\ -\frac{1}{\sqrt{d_{\Gamma}\left(v_{i}\right) d_{\Gamma}\left(v_{j}\right)}} & v_{i} v_{j} \in E(\Gamma) \\ 0 & \text { otherwise }\end{cases}
$$

Let G be a finite non-abelian group with center $Z(G)$. The commuting graph of group G, denoted by $\Gamma(G)$, is a simple undirected graph whose vertex set is $G-Z(G)$, and two vertices x and y are adjacent if and only if $x y=y x$. The commuting graph of finite groups was introduced in the seminal paper of Brauer and Fowler [2] in relationship with the classification of finite simple groups. After that a lot of works have been done on this subject. Recall that the Laplacian spectrum, signless Laplacian spectrum and normalized Laplacian spectrum of graph $\Gamma(G)$ denoted by $\operatorname{Spec}_{L}(\Gamma(G))=\left\{\lambda_{1}^{a_{1}}, \lambda_{2}^{a_{2}}, \ldots, \lambda_{l}^{a_{l}}\right\}, \operatorname{Spec}_{Q}(\Gamma(G))=\left\{\mu_{1}^{b_{1}}, \mu_{2}^{b_{2}}, \ldots, \mu_{m}^{b_{m}}\right\}$ and $\operatorname{Spec}_{\mathcal{L}}(\Gamma(G))=\left\{\gamma_{1}^{c_{1}}, \gamma_{2}^{c_{2}}, \ldots, \gamma_{n}^{c_{n}}\right\}$, respectively, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}$ are the eigenvalues of $L(\Gamma(G))$ with multiplicities $a_{1}, a_{2}, \ldots, a_{l} ; \mu_{1}, \mu_{2}, \ldots, \mu_{m}$ are the eigenvalues of $Q(\Gamma(G))$ with multiplicities $b_{1}, b_{2}, \ldots, b_{m}$ and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$ are the eigenvalues of $\mathcal{L}(\Gamma(G))$ with multiplicities $c_{1}, c_{2}, \ldots, c_{n}$. A group G is called an AC-group if $C_{G}(x)$ is abelian for all $x \in G-Z(G)$. The purpose of this paper is to compute the Laplacian spectrum, signless Laplacian spectrum and normalized Laplacian spectrum of the commuting graphs of some finite AC-groups. Note that throughout the paper, G is a finite group.

2 Preliminaries

In this section, we give some preliminary results that will be used in the proof of our main results.
Theorem 2.1. (Satz 5.9 of [4]) Let G be a finite non-solvable group. Then G is an $A C$-group if and only if G satisfies one of the following conditions:
(1) $\frac{G}{Z(G)} \cong P S L\left(2, p^{n}\right)$ or $P G L\left(2, p^{n}\right)$ and $G^{\prime} \cong S L\left(2, p^{n}\right)$, where p is a prime and $p^{n}>3$.
(2) $\frac{G}{Z(G)} \cong P S L(2,9)$ or $P G L(2,9)$ and $G^{\prime} \cong P S L(2,9)^{*}$, where $\operatorname{PSL}(2,9)^{*} \cong\left\langle c_{1}, c_{2}, c_{3}, c_{4}, k\right| c_{1}^{3}=c_{2}^{2}=c_{3}^{2}=$ $\left.c_{4}^{2}=\left(c_{1} c_{2}\right)^{3}=\left(c_{1} c_{3}\right)^{2}=\left(c_{2} c_{3}\right)^{3}=\left(c_{3} c_{4}\right)^{3}=k^{3},\left(c_{1} c_{4}\right)^{2}=k, c_{2} c_{4}=k^{3} c_{4} c_{2}, k c_{i}=c_{i} k(i=1, \ldots, 4), k^{6}=1\right\rangle$.

Lemma 2.2. (Lemma 3.9 of [1]) In the above Theorem, if $p=2$ or $|Z(G)|$ is odd or $G^{\prime} \cap Z(G)=1$, then $G \cong Z(G) \times P S L\left(2,2^{n}\right)$.

Proposition 2.3. (Proposition 3.21 of [1]) Let $G=\operatorname{PSL}(2, q)$, where q is a p-power (p prime) and let $k=\operatorname{gcd}(q-1,2)$. Then
(1) a Sylow p-subgroup P of G is an elementary abelian group of order q and the number of Sylow p-subgroups of G is $q+1$.
(2) G contains a cyclic subgroup A of order $t=\frac{q-1}{k}$ such that $N_{G}(\langle u\rangle)$ is a dihedral group of order $2 t$ for every non-trivial element $u \in A$.
(3) G contains a cyclic subgroup B of order $s=\frac{q+1}{k}$ such that $N_{G}(\langle u\rangle)$ is a dihedral group of order $2 s$ for every non-trivial element $u \in B$.
(4) The set $\left\{P^{x}, A^{x}, B^{x} \mid x \in G\right\}$ is a partition of G. Suppose a is a non-trivial element of G.
(5) If $q>5$ and $q \equiv 1 \bmod 4$, then

$$
C_{G}(a)= \begin{cases}N_{G}(\langle a\rangle) & \text { if } a^{2}=1 \text { and } a \in A^{x} \text { for some } x \in G, \\ A^{x} & \text { if } a^{2} \neq 1 \text { and } a \in A^{x} \text { for some } x \in G, \\ B^{x} & \text { if } a \in B^{x} \text { for some } x \in G, \\ P^{x} & \text { if } a \in P^{x} \text { for some } x \in G .\end{cases}
$$

(6) If $q>5$ and $q \equiv 3 \bmod 4$, then

$$
C_{G}(a)= \begin{cases}N_{G}(\langle a\rangle) & \text { if } a^{2}=1 \text { and } a \in B^{x} \text { for some } x \in G, \\ B^{x} & \text { if } a^{2} \neq 1 \text { and } a \in B^{x} \text { for some } x \in G, \\ A^{x} & \text { if } a \in A^{x} \text { for some } x \in G, \\ P^{x} & \text { if } a \in P^{x} \text { for some } x \in G .\end{cases}
$$

(7) If $q \equiv 0 \bmod 4$, then

$$
C_{G}(a)= \begin{cases}A^{x} & \text { if } a \in A^{x} \text { for some } x \in G, \\ B^{x} & \text { if } a \in B^{x} \text { for some } x \in G, \\ P^{x} & \text { if } a \in P^{x} \text { for some } x \in G\end{cases}
$$

Lemma 2.4. The group $G=\operatorname{PSL}\left(2,2^{n}\right)$ is an $A C$-group.
Proof. Let $G=\operatorname{PSL}\left(2,2^{n}\right)$. Then G is a non-abelian group of order $2^{n}\left(2^{2 n}-1\right)$ with trivial center. By Proposition 2.3, the set of centralizers of non-trivial elements of G is given by $\left\{A^{x}, B^{x}, P^{x} \mid x \in G\right\}$, where P is an elementary abelian 2 -subgroup and A, B are cyclic subgroups of G having order $2^{n}, 2^{n}-1$ and $2^{n}+1$, respectively. Also, the number of conjugates of P, A and B in G are $2^{n}+1,2^{n-1}\left(2^{n}+1\right)$ and $2^{n-1}\left(2^{n}-1\right)$, respectively. Therefore G is an AC-group.

Lemma 2.5. Let G be a non-abelian $A C$-group and H be an abelian group. Then $G \times H$ is an $A C$-group.
Proof. It is easy to see that $Z(G \times H)=Z(G) \times H$ and $C_{G}\left(a_{1}\right) \times H, C_{G}\left(a_{2}\right) \times H, \ldots, C_{G}\left(a_{n}\right) \times H$ are the distinct centralizers of non-central elements of $G \times H$, for $a_{i} \in G-Z(G)$, where $1 \leq i \leq n$. Therefore if G is an AC-group, then $G \times H$ is also an AC-group.

Lemma 2.6. (Lemma 2.1 of [3]) Let G be a finite non-abelian AC-group. Then the commuting graph of G is given by

$$
\Gamma(G)=\cup_{i=1}^{n} K_{\left|X_{i}\right|-|Z(G)|}
$$

where $X_{1}, X_{2}, \ldots, X_{n}$ are the distinct centralizers of non-central elements of G.
It is well-known that the Laplacian spectrum, signless Laplacian spectrum and normalized Laplacian spectrum of the complete graph K_{n} on n vertices are given by

$$
\operatorname{Spec}_{L}\left(K_{n}\right)=\left\{0^{1}, n^{n-1}\right\}, \quad \operatorname{Spec}_{Q}\left(K_{n}\right)=\left\{(2 n-2)^{1},(n-2)^{n-1}\right\} \quad \text { and } \quad \operatorname{Spec}_{\mathcal{L}}\left(K_{n}\right)=\left\{0^{1},\left(\frac{n}{n-1}\right)^{n-1}\right\}
$$

As a direct consequence of the above results, we have the following theorem:

Theorem 2.7. Let G be a non-abelian AC-group and $X_{1}, X_{2}, \ldots, X_{n}$ are the distinct centralizers of noncentral elements of G. Then we have the following cases:
(i) The Laplacian spectrum of the commuting graph of G is given by

$$
\left\{0^{n},\left(\left|X_{1}\right|-|Z(G)|\right)^{\left|X_{1}\right|-|Z(G)|-1},\left(\left|X_{2}\right|-|Z(G)|\right)^{\left|X_{2}\right|-|Z(G)|-1}, \ldots,\left(\left|X_{n}\right|-|Z(G)|\right)^{\left|X_{n}\right|-|Z(G)|-1}\right\}
$$

(ii) The signless Laplacian spectrum of the commuting graph of G is given by
$\left\{\left(2\left|X_{1}\right|-2|Z(G)|-2\right)^{1}, \ldots,\left(2\left|X_{n}\right|-2|Z(G)|-2\right)^{1},\left(\left|X_{1}\right|-|Z(G)|-2\right)^{\left|X_{1}\right|-|Z(G)|-1}, \ldots,\left(\left|X_{n}\right|-|Z(G)|-2\right)^{\left|X_{n}\right|-|Z(G)|-1}\right\}$
(iii) The normalized Laplacian spectrum of the commuting graph of G is given by

$$
\left\{0^{n},\left(\frac{\left|X_{1}\right|-|Z(G)|}{\left|X_{1}\right|-|Z(G)|-1}\right)^{\left|X_{1}\right|-|Z(G)|-1}, \ldots,\left(\frac{\left|X_{n}\right|-|Z(G)|}{\left|X_{n}\right|-|Z(G)|-1}\right)^{\left|X_{n}\right|-|Z(G)|-1}\right\}
$$

3 Main results

Now, we state our main results in the following two theorems.
Theorem 3.1. Let G be a non-abelian group such that $\frac{G}{Z(G)} \cong P S L\left(2,2^{n}\right)$. Then the commuting graph of G is given by

$$
\left(2^{n}+1\right) K_{|Z(G)|\left(\left|P^{x}\right|-1\right)} \cup 2^{n-1}\left(2^{n}+1\right) K_{|Z(G)|\left(\left|A^{x}\right|-1\right)} \cup 2^{n-1}\left(2^{n}-1\right) K_{|Z(G)|\left(\left|B^{x}\right|-1\right)}
$$

That is, $\left(2^{n}+1\right) K_{\left(2^{n}-1\right)|Z(G)|} \cup 2^{n-1}\left(2^{n}+1\right) K_{\left(2^{n}-2\right)|Z(G)|} \cup 2^{n-1}\left(2^{n}-1\right) K_{2^{n}|Z(G)|}$.
Theorem 3.2. Let G be a non-abelian group such that $\frac{G}{Z(G)} \cong P S L\left(2,2^{n}\right)$. Then we have the following cases:
(i) The Laplacian spectrum of the commuting graph of G is given by

$$
\left\{0^{2^{2 n}+2^{n}+1},\left(2^{n}-1\right)|Z(G)|^{\left(2^{n}+1\right)\left[\left(2^{n}-1\right)|Z(G)|-1\right]},\left(2^{n}-2\right)|Z(G)|^{2^{n-1}\left(2^{n}+1\right)\left[\left(2^{n}-2\right)|Z(G)|-1\right]}, 2^{n}|Z(G)|^{2^{n-1}\left(2^{n}-1\right)\left[2^{n}|Z(G)|-1\right]}\right\}
$$

(ii) The signless Laplacian spectrum of the commuting graph of G is given by

$$
\begin{gathered}
\left\{2\left[\left(2^{n}-1\right)|Z(G)|-1\right]^{2^{n}+1},\left[\left(2^{n}-1\right)|Z(G)|-2\right]^{\left(2^{n}+1\right)\left[\left(2^{n}-1\right)|Z(G)|-1\right]}, 2\left[\left(2^{n}-2\right)|Z(G)|-1\right]^{2^{n-1}\left(2^{n}+1\right)}\right. \\
\left.\left[\left(2^{n}-2\right)|Z(G)|-2\right]^{2^{n-1}\left(2^{n}+1\right)\left[\left(2^{n}-2\right)|Z(G)|-1\right]}, 2\left[2^{n}|Z(G)|-1\right]^{2^{n-1}\left(2^{n}-1\right)},\left[2^{n}|Z(G)|-2\right]^{2^{n-1}\left(2^{n}-1\right)\left[2^{n}|Z(G)|-1\right]}\right\}
\end{gathered}
$$

(iii) The normalized Laplacian spectrum of the commuting graph of G is given by

$$
\begin{gathered}
\left\{0^{2^{2 n}+2^{n}+1},\left(\frac{\left(2^{n}-1\right)|Z(G)|}{\left(2^{n}-1\right)|Z(G)|-1}\right)^{\left(2^{n}+1\right)\left[\left(2^{n}-1\right)|Z(G)|-1\right]}\right. \\
\left.\left(\frac{\left(2^{n}-2\right)|Z(G)|}{\left(2^{n}-2\right)|Z(G)|-1}\right)^{2^{n-1}\left(2^{n}+1\right)\left[\left(2^{n}-2\right)|Z(G)|-1\right]},\left(\frac{2^{n}|Z(G)|}{2^{n}|Z(G)|-1}\right)^{2^{n-1}\left(2^{n}-1\right)\left[2^{n}|Z(G)|-1\right]}\right\}
\end{gathered}
$$

References

[1] A. Abdollahi, S. Akbari, H. R. Maimani, Non-commuting graph of a group, J Algebra 298 (2006), 468-492.
[2] R. Brauer, K.A. Fowler, On groups of even order, Ann Math 62(2) (1955), 565-583.
[3] J. Dutta, R. K. Nath, Spectrum of commuting graphs of some classes of finite groups, Matematika 33(1) (2017), 87-95.
[4] R. Schmidt, Zentralisatorverbände endlicher gruppen, Rend Sem Mat Univ Padova 44 (1970), 97-131.
Email: zforouzanfar@gmail.com, z.forozanfar@bzeng.ikiu.ac.ir

