

Commuting automorphisms of certain p-groups

Nazila Azimi Shahrabi¹

Department Of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran

Mehri Akhavan Malayeri

Department Of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran

Abstract

Let G be a group. An automorphism α of a group G is called a commuting automorphism if each element g in G commutes with it's image $\alpha(g)$ under α . Let $\mathcal{A}(G)$ be the set of all commuting automorphisms of G. A group G is said to be an \mathcal{A} -group if $\mathcal{A}(G)$ forms a subgroup of Aut(G). In this paper, let G be a p-group of nilpotency class c where p is an odd prime. We give some sufficient conditions on G such that G is an \mathcal{A} -group. Also we show that if G is a p-group of maximal class of order p^n , $n \geq 5$, then Aut(G) is an \mathcal{A} -group.

Keywords: Commuting automorphism, *A*-group, p-group, coclass Mathematics Subject Classification [2010]: 20F28, 20D45, 20D15

1 Introduction

Let G be a group. By Aut(G) and $Aut_c(G)$ we denote the group of all automorphisms and the group of all central automorphisms of G, respectively. An automorphism α of G is called a commuting automorphism if $g\alpha(g) = \alpha(g)g$ for all $g \in G$. The set of all commuting automorphisms of the group G is denoted by $\mathcal{A}(G)$. The commuting automorphisms were first considered for rings (see [3] and [6]).

The following problem was proposed by I. N. Herstein to the American Mathematical Monthly: If G is a simple non-abelian group, then A(G) = 1 [8]. Giving answer to Hersteins problem, Laffey in 1998 [10], proved that A(G) = 1 provided G has no non-trivial abelian normal subgroups. Also, Pettet gave a more general statement proving that A(G) = 1 if Z(G) = 1 and the commutator subgroup of G is equal to G (see [10]).

By $Z_i(G)$, we denote the i-th terms of the upper central series of G. The i-th terms of the lower central series of G is denoted by $\gamma_i(G)$ and $\gamma_2(G)$ is denoted also by G'. We denote the Fratitini subgroup of G by $\phi(G)$. We write $[x, y] = x^{-1}y^{-1}xy$ for all $x, y \in G$, also [x, ny] = [[x, n-1y], y] for $n \ge 2$. Let $C_G(\alpha) = \{g \in G : \alpha(g) = g\}$. Finally d(G) denotes the minimum number of generators of G.

Throughout, p denotes a fixed prime. The nilpotency class of G is denoted by c(G). If $|G| = p^n$ and c(G) = c, then the coclass of G is cc(G) = n - c. A group of coclass 1 and coclass 2 are called p-groups of maximal class and of almost maximal class respectively.

In 2002, Deaconescu, Silberberg and Walls, asked the following questions about the set $\mathcal{A}(G)$:

1) Is it true that the set $\mathcal{A}(G)$ is always a subgroup of Aut(G)?

 $^{^{1}}$ speaker

2) What conditions on G imply the equality $\mathcal{A}(G) = Aut_c(G)$?

They showed that even though $\mathcal{A}(G)$ has a number of the properties of a group, but it is not necessarily a subgroup of Aut(G) (see [5]). Also they give some conditions on G such that $\mathcal{A}(G) = Aut_c(G)$. For example they proved that if G satisfies max on subgroups and $\phi(G) \cap Z(G') = 1$, then $\mathcal{A}(G) = Aut_c(G)$. They showed that if the subgroup of right 2-engel elements of G, $R_2(G)$, coincides with Z(G), then $\mathcal{A}(G) = Aut_c(G)$.

Definition 1.1. A group G is called \mathcal{A} -group if the set

$$\mathcal{A}(G) = \{ \alpha \in Aut(G) : g\alpha(g) = \alpha(g)g \text{ for all } g \in G \}$$

forms a subgroup of Aut(G).

Vosooghpour and Akhavan-Malayeri [13] showed that for a given prime p, minimum order of a non- \mathcal{A} p-group G is p^5 . They proved that there exists a non- \mathcal{A} p-group G of order p^n for all $n \geq 5$.

Fouladi and Orfi showed that, if G is a finite AC-group or a p-group of maximal class or a metacyclic p-group, then G is an \mathcal{A} -group. Also they proved that if G is a p-group of maximal class of order p^n , $n \ge 4$, then $\mathcal{A}(G) = Aut_c(G)$ (see [7]).

In 2015 Rai proved that a finite *p*-group *G* of coclass 2, for an odd prime *p*, is an \mathcal{A} -group (see [12]). Vosooghpour also proved this result. But Vosooghpour's result never got published, except in her Ph.D. thesis in 2014 [14].

Also, we proved that a finite 2-group G of almost maximal class is an \mathcal{A} -group. Therefore if p is a prime number and suppose G is a p-group with $cc(G) \leq 2$, then $G \in \mathcal{A}$ (see [1]).

In [2] we proved that in a finite 2-groups of almost maximal class $\mathcal{A}(G) = Aut_c(G)$, except only for the following five groups.

$$\begin{aligned} G_1 &= \langle x, y, t : x^{2^{n-2}} = t^2 = y^2 = 1, \ x^y = x^{-1+2^{n-4}}t, \ x^t = x^{2^{n-3}+1}, \ t^y = t \rangle, \\ G_2 &= \langle x, y, t : x^{2^{n-2}} = t^2 = 1, y^2 = x^{2^{n-3}}, \ x^y = x^{-1+2^{n-4}}t, \ x^t = x^{2^{n-3}+1}, \ t^y = t \rangle, \\ G_3 &= \langle a, b : a^2 = b^4 = [a, b, a] = [a, b, b] = 1 \rangle, \\ G_4 &= \langle a, b : a^2 = [a, b, a] = [a, b, b] b^{-4} = 1 \rangle, \\ G_5 &= \langle a, b : a^2 b^{-4} = [a, b, a] = [a, b, b] b^{-4} = 1 \rangle. \end{aligned}$$

In this paper, we give some sufficient conditions on G such that G or Aut(G) is an \mathcal{A} -group.

First, we collect some results on commuting automorphisms, required in the poof of main results.

Lemma 1.2. ([13, Lemma 2.2]) Let G be a group of nilpotency class 2. If d(G/Z(G)) = 2, then G is an \mathcal{A} -group.

Theorem 1.3. ([5, Theorem 1.4]) If G is a group and if $\alpha \in \mathcal{A}(G)$, then $[G^2, \alpha] \leq Z_2(G)$.

Lemma 1.4. ([12, Lemma 3.2]) Let p be an odd prime and G be a finite p-group such that $Z_2(G)$ is abelian. Then G is an A-group.

Lemma 1.5. ([5, Lemma 2.2, Lemma 2.4 and Lemma 2.6]) Let G be a group and $\alpha, \beta \in \mathcal{A}(G)$, then (i) $\alpha\beta \in \mathcal{A}(G)$ if and only if $[\alpha(x), \beta(x)] = 1$ for all $x \in G$. (ii) $[G, \alpha] \in R_2(G)$. (iii) $[G', \alpha] \in Z(G)$. (iv) $[G', G] \leq C_G(\alpha)$. (v) $x^{-1}\alpha(x) \in C_G(G')$ for all $x \in G$.

Lemma 1.6. ([5, Lemma 2.1]) If $\alpha \in \mathcal{A}(G)$ and $x, y \in G$, then $[\alpha(x), y] = [x, \alpha(y)]$.

Theorem 1.7. ([12, Theorem 3.1]) Let G be a finite p-group for an odd prime p. If $[Z_2(G), \mathcal{A}(G)] \leq Z(G)$, then G is an \mathcal{A} -group.

Theorem 1.8. ([7, Lemma 3.1 and Theorem 3.4]) Let G be a p-group of maximal class and order p^n , where $n \ge 4$. Then $\mathcal{A}(G) = Aut_c(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

2 Main results

Let p be an odd prime and G be a finite p-group. Rai in [12], proved that if $|Z_2(G)/Z(G)| = p^2$ and $Z(G) = \gamma_k(G)$ for some $k \ge 2$, then G is an \mathcal{A} -group. In the following theorem, we extend his result.

Theorem 2.1. Let G be a p-group of nilpotency class c where p is an odd prime. If $G' \cap Z(G) = \gamma_c(G)$ and $|Z_2(G)/Z(G)| \leq p^2$, then G is an A-group. In particular if G is non-abelian, then $p||Inn(G) \cap A(G)|$.

Proof. If G is an abelian group, then $\mathcal{A}(G) = Aut(G)$. Therefore suppose G is non-abelian. Let c(G) = 2. Then $Z_2(G) = G$, therefore by Lemma 1.2, G is an A-group. In continue suppose $c = c(G) \ge 3$. Since G is an of odd order, by Theorem 1.3, we have for all $\alpha \in \mathcal{A}(G)$ and for all $x \in G$, $x^{-1}\alpha(x) \in \mathbb{Z}_2(G)$. If $Z_2(G)$ is an abelia group, then by Lemma 1.4, G is an \mathcal{A} -group. So let us assume $Z_2(G)$ is non-abelian. Therefore $Z_2(G)/Z(G)$ is an elementary abelian group. Let $Z_2(G)/Z(G) = \langle aZ(G) \rangle \times \langle bZ(G) \rangle$. Since $Z_2(G)$ is non-abelian, we have $1 \neq [a, b] \in Z(G)$ is an element of order p. Note that every element of $Z_2(G)$ can be written as $a^i b^j z$ for some $z \in Z(G)$ and $0 \le i, j < p$. Suppose $a^i b^j z \in C_G(a) \cap Z_2(G)$ for some $z \in Z(G)$ and $0 \leq i, j < p$. We show that $C_G(a) \cap Z_2(G) = \langle a, Z(G) \rangle$. Suppose $a^i b^j z \in C_G(a) \cap Z_2(G)$, therefore $1 = [a^i b^j z, a] = [b, a]^j$. Since $0 \le j < p$, we have j = 0. This implies that $C_G(a) \cap Z_2(G) = \langle a, Z(G) \rangle$. By a similar argument we obtain that $C_G(b) \cap Z_2(G) = \langle b, Z(G) \rangle$. Let $\alpha \in \mathcal{A}(G)$. Since $[\alpha(a), a] = 1 = [\alpha(b), b]$, we have $\alpha(a) = a^i u$ and $\alpha(b) = b^j v$ where $0 \le i, j < p$ and $u, v \in Z(G)$. By Lemma 1.6, $[\alpha(a), b] = [a, \alpha(b)]$ and so $[a,b]^i = [a,b]^j$. Since |[a,b]| = p and $0 \le i, j < p$, we have i = j. Since $[a,b] \in G' \cap Z(G) = \gamma_c(G)$ and $c(G) \ge 3$, by Lemma 1.5, we have $[\alpha(a), \alpha(b)] = [a,b]$, so $[a,b]^{i^2} = [a,b]$. Therefore $i \equiv_p 1$ or $i \equiv_p -1$. Now suppose $\alpha(a) = a^{-1}u$ and $\alpha(b) = b^{-1}v$. It easily follows that for all $w \in Z_2(G)$, $\alpha(w) = w^{-1}m$ for some $m \in Z(G)$. Now $\gamma_{c-1}(G) \leq Z_2(G)$, so for all $y \in \gamma_{c-1}(G)$, we have $\alpha(y) = y^{-1}z'$ for some $z' \in Z(G)$. Also by Lemma 1.5, $\alpha(y) = yz''$ for some $z'' \in Z(G)$. Therefore $y^2 \in Z(G)$, so $y \in Z(G)$ because G is an odd prime. So $\gamma_{c-1}(G) = \gamma_c(G)$, a contradiction. Therefore $\alpha(a) = au$ and $\alpha(b) = bv$ where $u, v \in Z(G)$. By Theorem 1.7, proof is complete. Since $Z_2(G)/Z(G) \cong Aut_c(G) \cap Inn(G)$ and $Aut_c(G) \cap Inn(G) \leq \mathcal{A}(G) \cap Inn(G)$, if G is non-abelian, then $p||Inn(G) \cap \mathcal{A}(G)|$.

In particular, we have the following consequences of above theorem.

Corollary 2.2. For any positive integer n and any odd prime number p, there exists a finite \mathcal{A} p-group in which cc(G) = n.

Proof. Let $G = \langle a, c | a^{p^n} = c^{p^{n+1}} = 1, c^a = c^{p+1} \rangle$. It is clear that $|G| = p^{2n+1}$. We have c(G) = n+1, $Z(G) = \langle c^{p^n} \rangle = \gamma_{n+1}(G)$ and $Z_2(G)/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Therefore G satisfies the conditions of Theorem 2.1. Hence G is an \mathcal{A} -group and cc(G) = n.

Corollary 2.3. A finite p-group of $cc(G) \leq 2$, for an odd prime p is an \mathcal{A} -group.

Now, for next corollary we need the following definition.

Definition 2.4. Let m, n be integers and $3 \le m \le n$. The set of all groups G of order p^n and c(G) = m-1, in which $|\gamma_i(G) : \gamma_{i+1}(G)| = p$ (i = 2, ..., m-1) is denoted by CF(m, n, p).

In [4] Blackburn studied this class of groups.

Theorem 2.5. ([4, Theorem 2.4]) If $G \in CF(m, n, p)$, then $Z_i(G) \cap G' = \gamma_{m-i}(G)$ for $0 \le i \le m - 2$.

Corollary 2.6. If $G \in CF(m, n, p)$, p is an odd prime such that $|Z_2(G)/Z(G)| \leq p^2$, then G is an A-group.

Proof. By Theorem 2.5, $G' \cap Z(G) = \gamma_{m-1}(G)$ and by Theorem 2.1, proof is complete.

Let G be a group of maximal class of order p^n , $n \ge 4$, Where p is a prime. For each i with $2 \le i \le n-2$, the 2-step centralizer K_i in G is defined to be centralizer in G of $\gamma_i(G)/\gamma_{i+2}(G)$. Define $P_i = P_i(G)$ by $P_0(G) = G$, $P_1(G) = K_2$ and $P_i = \gamma_i(G)$ for $2 \le i \le n$. Take $s_1 \in P_1 - P_2$, $s \in G - \bigcup_{i=2}^{n-2} K_i$ and define $s_i = [s_{1,i-1}s]$ for $2 \le i \le n-1$. Note that $G = \langle s, s_1 \rangle$, $P_i = \langle s_i, ..., s_{n-1} \rangle$ for $1 \le i \le n-1$ and $Z_i(G) = \gamma_{n-i}(G)$ for $1 \le i \le n-1$ (see [9] and [11]).

Theorem 2.7. If G is a p-group of maximal class of order p^n , $n \ge 5$, then Aut(G) is an A-group.

Proof. First we show that $R_2(Aut(G))$ is an abelian group. Let $\alpha \in R_2(Aut(G))$. Then $1 = [\alpha, T_x, T_x] = T_{[x^{-1},\alpha^{-1}(x)x^{-1}]}$ for all $x \in G$. So $[\alpha(x), x] \in Z(G)$. Let $\overline{\alpha}$ be the automorphism induced by α on $\overline{G} = G/Z(G)$. Then $\overline{\alpha} \in \mathcal{A}(G/Z(G)) = Aut_c(G/Z(G))$ by Theorem 1.8. So $g^{-1}\alpha(g) \in Z_2(G)$ for all $g \in G$. Since G is a p-group of maximal class of order p^n , $n \geq 5$, we have $Z_2(G) = \gamma_{n-2}(G)$ is an abelian group.

Now $G = \langle s, s_1 \rangle$. Let $\alpha(s) = sz$ and $\alpha(s_1) = s_1z_1$ where $z, z_1 \in Z_2(G)$. We claim that $\gamma_3(G) \leq C_G(\alpha)$. Since $[s_i, s] = s_{i+1}$, by a simple calculation, we have $\alpha(s_2) = [\alpha(s_1), \alpha(s)] = s_2u$ where $u \in Z(G)$. Also $\alpha(s_3) = [\alpha(s_2), \alpha(s)] = [s_2u, sz] = [s_2, z][s_2, s]^z = s_3$ because $[G', Z_2(G)] = 1$ and $u \in Z(G)$. Since for all $3 \leq i \leq n-2$, $s_{i+1} = [s_i, s]$, we have $\alpha(s_{i+1}) = [\alpha(s_i), \alpha(s)] = [s_i, sz] = [s_i, z][s_i, s]^z = s_{i+1}$ because $[G', Z_2(G)] = 1$. Therefore $\gamma_3(G) \leq C_G(\alpha)$.

Now let $\theta, \gamma \in R_2(Aut(G))$. Therefore for all $g \in G$, we have $\theta(g) = gm$ and $\gamma(g) = gn$ where $m, n \in Z_2(G)$. Since for all $\alpha \in R_2(Aut(G))$, we have $Z_2(G) = \gamma_{n-2}(G) \leq C_G(\alpha)$ is a group of order p^2 , a simple calculation shows that $\theta\gamma = \gamma\theta$. Consequently $R_2(Aut(G))$ is an abelian group.

Let $\alpha, \beta \in \mathcal{A}(Aut(G))$ and $x \in Aut(G)$. Then $\alpha(x) = xz_1, \beta(x) = xz_2$ where $z_1, z_2 \in C_{Aut(G)}(Aut(G)') \cap R_2(Aut(G))$ by Lemma 1.5. So

$$[\alpha(x),\beta(x)] = [xz_1, xz_2] = [x, xz_2]^{z_1}[z_1, xz_2] = [x, xz_2][z_1, xz_2],$$

because z_1 commutes with every commutator. Since $[\alpha(x), x] = [\beta(x), x] = 1$, we have $[\alpha(x), \beta(x)] = [z_1, z_2]$. Since z_1, z_2 belong to an abelian subgroup of Aut(G), we have $[\alpha(x), \beta(x)] = 1$. So by Lemma 1.5, Aut(G) is an \mathcal{A} -group.

Acknowledgment

The authors acknowledge the support of Alzahra University.

References

- N. Azimi shahrabi, M. Akhavan-Malayeri and F. Vosooghpour, Commuting automorphisms of finite 2-groups of almost maximal class, I, JAA 18(11) (2019) 1950208.
- [2] N. Azimi shahrabi, M. Akhavan-Malayeri, Commuting automorphisms of finite 2-groups of almost maximal class, II, JAA 20 (4) (2021) 2150060.
- [3] H. E. Bell and W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), no. 1, 92–101.
- [4] N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45–92.
- [5] M. Deaconescu, G. Silberberg, and G. L. Walls, On commuting automorphisms of groups, Arch. Math. 79 (2002), no. 6, 423–429.
- [6] N. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada. Sect. III. 49 (1955), 19–22.
- [7] S. Fouladi and R. Orfi, Commuting automorphisms of some finite groups, Glas. Mat. Ser. III. 48 (68) (2013), no. 1, 91–96.

- [8] I. N. Herstein, Problems and solutions: Elementary Problems: E3039, Amer. Math. Monthly. 91(1984), no. 3, 203.
- [9] B. Huppert, Endliche Gruppen. I, Spring-Verlage, Berlin-Heidelberg-New York, 1967.
- [10] T. J. Laffey, Problems and Solutions: Solutions of Elementrary Problems: E3039, Amer. Math. 93 (1986), no. 10, 816-817.
- [11] C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, London Math. Soc. Monogr. Ser. 27, Oxford Univ. Press, Oxford, 2002.
- [12] P. K. Rai, On commuting automorphisms of finite p-groups, Proc. Japan Acad. Ser. A 91 (2015), no. 5, 57–60.
- [13] F. Vosooghpour, M. Akhavan-Malayeri, On commuting automorphisms of p-groups, Comm. Algebra 41 (2013), no. 4, 1292–1299.
- [14] F. Vosooghpour, Commuting and centralizing automorphisms of groups, Ph.D. Thesis, Alzahra University, 2014.

Email: n.azimi@alzahra.ac.ir, aziminazila@yahoo.com Email: mmalayer@alzahra.ac.ir, makhavanm@yahoo.com