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Abstract

Let G be a group. An automorphism α of a group G is called a commuting automorphism if each
element g in G commutes with it’s image α(g) under α. Let A(G) be the set of all commuting automor-
phisms of G. A group G is said to be an A-group if A(G) forms a subgroup of Aut(G). In this paper, let
G be a p-group of nilpotency class c where p is an odd prime. We give some sufficient conditions on G
such that G is an A-group. Also we show that if G is a p-group of maximal class of order pn, n ≥ 5, then
Aut(G) is an A-group.
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1 Introduction

Let G be a group. By Aut(G) and Autc(G) we denote the group of all automorphisms and the group of all
central automorphisms of G, respectively. An automorphism α of G is called a commuting automorphism if
gα(g) = α(g)g for all g ∈ G. The set of all commuting automorphisms of the group G is denoted by A(G).
The commuting automorphisms were first considered for rings (see [3] and [6]).

The following problem was proposed by I. N. Herstein to the American Mathematical Monthly: If G is
a simple non-abelian group, then A(G) = 1 [8]. Giving answer to Hersteins problem, Laffey in 1998 [10],
proved that A(G) = 1 provided G has no non-trivial abelian normal subgroups. Also, Pettet gave a more
general statement proving that A(G) = 1 if Z(G) = 1 and the commutator subgroup of G is equal to G (see
[10]).

By Zi(G), we denote the i-th terms of the upper central series of G. The i-th terms of the lower central
series of G is denoted by γi(G) and γ2(G)is denoted also by G′. We denote the Fratitini subgroup of
G by φ(G). We write [x, y] = x−1y−1xy for all x, y ∈ G, also [x,n y] =

[
[x,n−1 y], y

]
for n ≥ 2. Let

CG(α) = {g ∈ G : α(g) = g}. Finally d(G) denotes the minimum number of generators of G.
Throughout, p denotes a fixed prime. The nilpotency class of G is denoted by c(G). If |G| = pn and

c(G) = c, then the coclass of G is cc(G) = n− c. A group of coclass 1 and coclass 2 are called p-groups of
maximal class and of almost maximal class respectively.

In 2002, Deaconescu, Silberberg and Walls, asked the following questions about the set A(G):

1) Is it true that the set A(G) is always a subgroup of Aut(G)?

1speaker

6



Commuting automorphisms of certain p-groups 7

2) What conditions on G imply the equality A(G) = Autc(G)?

They showed that even though A(G) has a number of the properties of a group, but it is not necessarily a
subgroup of Aut(G) (see [5]). Also they give some conditions on G such that A(G) = Autc(G). For example
they proved that if G satisfies max on subgroups and φ(G)∩Z(G′) = 1, then A(G) = Autc(G). They showed
that if the subgroup of right 2-engel elements of G, R2(G), coincides with Z(G), then A(G) = Autc(G).

Definition 1.1. A group G is called A-group if the set

A(G) = {α ∈ Aut(G) : gα(g) = α(g)g for all g ∈ G}

forms a subgroup of Aut(G).

Vosooghpour and Akhavan-Malayeri [13] showed that for a given prime p, minimum order of a non-A
p-group G is p5. They proved that there exists a non-A p-group G of order pn for all n ≥ 5.

Fouladi and Orfi showed that, if G is a finite AC-group or a p-group of maximal class or a metacyclic
p-group, then G is an A-group. Also they proved that if G is a p-group of maximal class of order pn, n ≥ 4,
then A(G) = Autc(G) (see [7]).

In 2015 Rai proved that a finite p-group G of coclass 2, for an odd prime p, is an A-group (see [12]).
Vosooghpour also proved this result. But Vosooghpour’s result never got published, except in her Ph.D.
thesis in 2014 [14].

Also, we proved that a finite 2-group G of almost maximal class is an A-group. Therefore if p is a prime
number and suppose G is a p-group with cc(G) ≤ 2, then G ∈ A (see [1]).

In [2] we proved that in a finite 2-groups of almost maximal class A(G) = Autc(G), except only for the
following five groups.

G1 = 〈x, y, t : x2
n−2

= t2 = y2 = 1, xy = x−1+2n−4
t, xt = x2

n−3+1, ty = t〉,

G2 = 〈x, y, t : x2
n−2

= t2 = 1, y2 = x2
n−3

, xy = x−1+2n−4
t, xt = x2

n−3+1, ty = t〉,
G3 = 〈a, b : a2 = b4 = [a, b, a] = [a, b, b, b] = 1〉,
G4 = 〈a, b : a2 = [a, b, a] = [a, b, b]b−4 = 1〉,
G5 = 〈a, b : a2b−4 = [a, b, a] = [a, b, b]b−4 = 1〉.

In this paper, we give some sufficient conditions on G such that G or Aut(G) is an A-group.
First, we collect some results on commuting automorphisms, required in the poof of main results.

Lemma 1.2. ([13, Lemma 2.2]) Let G be a group of nilpotency class 2. If d(G/Z(G)) = 2, then G is an
A-group.

Theorem 1.3. ([5, Theorem 1.4]) If G is a group and if α ∈ A(G), then [G2, α] ≤ Z2(G).

Lemma 1.4. ([12, Lemma 3.2]) Let p be an odd prime and G be a finite p-group such that Z2(G) is abelian.
Then G is an A-group.

Lemma 1.5. ([5, Lemma 2.2, Lemma 2.4 and Lemma 2.6]) Let G be a group and α, β ∈ A(G), then
(i) αβ ∈ A(G) if and only if [α(x), β(x)] = 1 for all x ∈ G.
(ii) [G,α] ∈ R2(G).
(iii) [G′, α] ∈ Z(G).
(iv) [G′, G] ≤ CG(α).
(v) x−1α(x) ∈ CG(G′) for all x ∈ G.

Lemma 1.6. ([5, Lemma 2.1]) If α ∈ A(G) and x, y ∈ G, then [α(x), y] = [x, α(y)].
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Theorem 1.7. ([12, Theorem 3.1]) Let G be a finite p-group for an odd prime p. If [Z2(G),A(G)] ≤ Z(G),
then G is an A-group.

Theorem 1.8. ([7, Lemma 3.1 and Theorem 3.4]) Let G be a p-group of maximal class and order pn, where
n ≥ 4. Then A(G) = Autc(G) ∼= Zp × Zp.

2 Main results

Let p be an odd prime and G be a finite p-group. Rai in [12], proved that if |Z2(G)/Z(G)| = p2 and
Z(G) = γk(G) for some k ≥ 2, then G is an A-group. In the following theorem, we extend his result.

Theorem 2.1. Let G be a p-group of nilpotency class c where p is an odd prime. If G′ ∩Z(G) = γc(G) and
|Z2(G)/Z(G)| ≤ p2, then G is an A-group. In particular if G is non-abelian, then p||Inn(G) ∩ A(G)|.

Proof. If G is an abelian group, then A(G) = Aut(G). Therefore suppose G is non-abelian. Let c(G) = 2.
Then Z2(G) = G, therefore by Lemma 1.2, G is an A-group. In continue suppose c = c(G) ≥ 3. Since
G is an of odd order, by Theorem 1.3, we have for all α ∈ A(G) and for all x ∈ G, x−1α(x) ∈ Z2(G). If
Z2(G) is an abelia group, then by Lemma 1.4, G is an A-group. So let us assume Z2(G) is non-abelian.
Therefore Z2(G)/Z(G) is an elementary abelian group. Let Z2(G)/Z(G) = 〈aZ(G)〉×〈bZ(G)〉. Since Z2(G)
is non-abelian, we have 1 6= [a, b] ∈ Z(G) is an element of order p. Note that every element of Z2(G) can
be written as aibjz for some z ∈ Z(G) and 0 ≤ i, j < p. Suppose aibjz ∈ CG(a) ∩ Z2(G) for some z ∈ Z(G)
and 0 ≤ i, j < p. We show that CG(a) ∩ Z2(G) = 〈a, Z(G)〉. Suppose aibjz ∈ CG(a) ∩ Z2(G), therefore
1 = [aibjz, a] = [b, a]j . Since 0 ≤ j < p, we have j = 0. This implics that CG(a) ∩ Z2(G) = 〈a, Z(G)〉. By a
similar argument we obtain that CG(b) ∩ Z2(G) = 〈b, Z(G)〉. Let α ∈ A(G). Since [α(a), a] = 1 = [α(b), b],
we have α(a) = aiu and α(b) = bjv where 0 ≤ i, j < p and u, v ∈ Z(G). By Lemma 1.6, [α(a), b] = [a, α(b)]
and so [a, b]i = [a, b]j . Since |[a, b]| = p and 0 ≤ i, j < p, we have i = j. Since [a, b] ∈ G′ ∩ Z(G) = γc(G)
and c(G) ≥ 3, by Lemma 1.5, we have [α(a), α(b)] = [a, b], so [a, b]i

2
= [a, b]. Therefore i ≡p 1 or i ≡p −1.

Now suppose α(a) = a−1u and α(b) = b−1v. It easily follows that for all w ∈ Z2(G), α(w) = w−1m for some
m ∈ Z(G). Now γc−1(G) ≤ Z2(G), so for all y ∈ γc−1(G), we have α(y) = y−1z′ for some z′ ∈ Z(G). Also by
Lemma 1.5, α(y) = yz′′ for some z′′ ∈ Z(G). Therefore y2 ∈ Z(G), so y ∈ Z(G) because G is an odd prime.
So γc−1(G) = γc(G), a contradiction. Therefore α(a) = au and α(b) = bv where u, v ∈ Z(G). By Theorem
1.7, proof is complete. Since Z2(G)/Z(G) ∼= Autc(G)∩ Inn(G) and Autc(G)∩ Inn(G) ≤ A(G)∩ Inn(G), if
G is non-abelian, then p||Inn(G) ∩ A(G)|.

In particular, we have the following consequences of above theorem.

Corollary 2.2. For any positive integer n and any odd prime number p, there exists a finite A p-group in
which cc(G) = n.

Proof. Let G = 〈a, c|apn = cp
n+1

= 1, ca = cp+1〉. It is clear that |G| = p2n+1. We have c(G) = n + 1,
Z(G) = 〈cpn〉 = γn+1(G) and Z2(G)/Z(G) ∼= Zp × Zp. Therefore G satisfies the conditions of Theorem 2.1.
Hence G is an A-group and cc(G) = n.

Corollary 2.3. A finite p-group of cc(G) ≤ 2, for an odd prime p is an A-group.

Now, for next corollary we need the following definition.

Definition 2.4. Let m,n be integers and 3 ≤ m ≤ n. The set of all groups G of order pn and c(G) = m−1,
in which |γi(G) : γi+1(G)| = p (i = 2, ....,m− 1) is denoted by CF (m,n, p).

In [4] Blackburn studied this class of groups.

Theorem 2.5. ([4, Theorem 2.4]) If G ∈ CF (m,n, p), then Zi(G) ∩G′ = γm−i(G) for 0 ≤ i ≤ m− 2.

Corollary 2.6. If G ∈ CF (m,n, p), p is an odd prime such that |Z2(G)/Z(G)| ≤ p2, then G is an A-group.

Proof. By Theorem 2.5, G′ ∩ Z(G) = γm−1(G) and by Theorem 2.1, proof is complete.
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Let G be a group of maximal class of order pn, n ≥ 4, Where p is a prime. For each i with 2 ≤ i ≤ n−2,
the 2-step centralizer Ki in G is defined to be centralizer in G of γi(G)/γi+2(G). Define Pi = Pi(G) by
P0(G) = G, P1(G) = K2 and Pi = γi(G) for 2 ≤ i ≤ n. Take s1 ∈ P1 − P2, s ∈ G − ∪n−2i=2Ki and
define si = [s1,i−1 s] for 2 ≤ i ≤ n − 1. Note that G = 〈s, s1〉, Pi = 〈si, ...., sn−1〉 for 1 ≤ i ≤ n − 1 and
Zi(G) = γn−i(G) for 1 ≤ i ≤ n− 1 (see [9] and [11]).

Theorem 2.7. If G is a p-group of maximal class of order pn, n ≥ 5, then Aut(G) is an A-group.

Proof. First we show that R2(Aut(G)) is an abelian group. Let α ∈ R2(Aut(G)). Then 1 = [α, Tx, Tx] =
T[x−1,α−1(x)x−1] for all x ∈ G. So [α(x), x] ∈ Z(G). Let α be the automorphism induced by α on G = G/Z(G).
Then α ∈ A(G/Z(G)) = Autc(G/Z(G)) by Theorem 1.8. So g−1α(g) ∈ Z2(G) for all g ∈ G. Since G is a
p-group of maximal class of order pn, n ≥ 5, we have Z2(G) = γn−2(G) is an abelian group.

Now G = 〈s, s1〉. Let α(s) = sz and α(s1) = s1z1 where z, z1 ∈ Z2(G). We claim that γ3(G) ≤ CG(α).
Since [si, s] = si+1, by a simple calculation, we have α(s2) = [α(s1), α(s)] = s2u where u ∈ Z(G). Also
α(s3) = [α(s2), α(s)] = [s2u, sz] = [s2, z][s2, s]

z = s3 because [G′, Z2(G)] = 1 and u ∈ Z(G). Since for
all 3 ≤ i ≤ n − 2, si+1 = [si, s], we have α(si+1) = [α(si), α(s)] = [si, sz] = [si, z][si, s]

z = si+1 because
[G′, Z2(G)] = 1. Therefore γ3(G) ≤ CG(α).

Now let θ, γ ∈ R2(Aut(G)). Therefore for all g ∈ G, we have θ(g) = gm and γ(g) = gn where
m,n ∈ Z2(G). Since for all α ∈ R2(Aut(G)), we have Z2(G) = γn−2(G) ≤ CG(α) is a group of order p2, a
simple calculation shows that θγ = γθ. Consequently R2(Aut(G)) is an abelian group.

Let α, β ∈ A(Aut(G)) and x ∈ Aut(G). Then α(x) = xz1, β(x) = xz2 where z1, z2 ∈ CAut(G)(Aut(G)′)∩
R2(Aut(G)) by Lemma 1.5. So

[α(x), β(x)] = [xz1, xz2] = [x, xz2]
z1 [z1, xz2] = [x, xz2][z1, xz2],

because z1 commutes with every commutator. Since [α(x), x] = [β(x), x] = 1, we have [α(x), β(x)] = [z1, z2].
Since z1, z2 belong to an abelian subgroup of Aut(G), we have [α(x), β(x)] = 1. So by Lemma 1.5, Aut(G)
is an A-group.
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