A subnormally condition on certain number of elements of a group

Hassan Khosravi ${ }^{1}$
Gonbad Kavous university, Gonbad Kavous, Iran

Abstract

Let $n>0$ be an integer number. We say that a group G satisfies the condition (\mathcal{S}, n) whenever in every subset X of G containing $n+1$ elements, there exist distinct elements x and y in X such that $\langle x\rangle$ and $\langle y\rangle$ are subnormal in $\langle x, y\rangle$. In this talk we study finite groups G in (\mathcal{S}, n) and find a bound (depending only on n) for the size of every semisimple finite group satisfying the condition (\mathcal{S}, n).

Keywords: Finite group, nilpotent group, Baer group.
Mathematics Subject Classification [2010]: 20B05, 20D15

1 Introduction

Let G be a group and let H be a subgroup of G. Then H is said to be subnormal in G, or simply H sn G, if there exists a finite series

$$
H=H_{0} \unlhd H_{1} \unlhd \cdots \unlhd H_{n}=G .
$$

The length of the shortest such series is called the defect of H in G. A group is called a Baer group if every cyclic subgroup is subnormal. If every cyclic subgroup of G is subnormal of defect at most n then we say that G is an n-Baer group or a B_{n}-group. Under a stronger hypothesis that every subgroup of G is subnormal of defect at most n, we say that G is a U_{n}-group. By a theorem of Roseblade [4], every U_{n}-group is nilpotent and the nilpotency class is bounded by a function only depended on n. this function is however still not well understood. Now for any two elements a and b of G, we define inductively $[a, n b]$ the n-Engel commutator of the pair (a, b), as follows:

$$
[a, 0 b]:=a,[a, b]=[a, 1 b]:=a^{-1} b^{-1} a b \text { and }\left[a,,_{n} b\right]=\left[\left[a,_{n-1} b\right], b\right] \text { for all } n>0 .
$$

An element x of G is called right (or left) Engel, provided that $\left[x,{ }_{n} g\right]=1$ (or $[g, n x]=1$) for all $g \in G$ and positive integer number $n=n(g)$. If every $x \in G$ is left Engel element, we say G is an Engel group. Now let $\langle x\rangle$ be subnormal in $\langle x, y\rangle$ of defect n. Then we have a series

$$
\langle x\rangle=H_{0} \unlhd H_{1} \unlhd \cdots \unlhd H_{n}=\langle x, y\rangle .
$$

Therefore

$$
[y, x] \in H_{n-1},[y, x, x] \in H_{n-2}, \ldots,[y, n x] \in H_{0}=\langle x\rangle .
$$

Thus $\left[y_{,_{k+1}} x\right]=1$. It is a well-known fact that for a finite group G, the following are equivalent:

1. G is nilpotent.

[^0]2. Every cyclic subgroup of G is subnormal.
3. $\langle x\rangle \operatorname{sn}\langle x, y\rangle$ for all $x, y \in G$.
4. G is an Engel group.

The only difficult part, which is proved originally by M. Zorn [6], is the implication $(4) \Longrightarrow(1)$. Therefore every Baer group is Engel and if G is finite then G is a Baer group. Paul Erdos posed the following question [2]: Let G be an infinite group. If there is no infinite subset of G whose elements do not mutually commute, which called non-commuting subset of G, is there then a finite bound on the cardinality of each such set of elements? The affirmative answer to this question was obtained by B. H. Neumann who proved in [2] that a group is centre-by-finite if and only if every infinite subset of the group contains two different commuting elements. Payber [3] has shown that if the group G contains at most n pairwise non-commuting elements, then $\left|\frac{G}{Z(G)}\right|<c^{n}$ for some constant c. That means if every subset X of G containing $n+1$ elements contains tow distinct commuting element, then $\left|\frac{G}{Z(G)}\right|<c^{n}$ for some constant c. Now let $n>0$ be an integer and \mathcal{X} be a class of groups. We say that a group G satisfies the condition (\mathcal{X}, n) whenever in every subset with $n+1$ elements of G there exist distinct elements x, y such that $\langle x, y\rangle$ is in \mathcal{X}. So if \mathcal{A} is the class of abelian groups and $G \in(\mathcal{A}, n)$ then by $[3]\left|\frac{G}{Z(G)}\right|<c^{n}$ for some constant c.

Tomkinson in [5] proved that if G is a finitely generated soluble group satisfying the condition (\mathcal{N}, n), whenever \mathcal{N} is the class of nilpotent groups, then $\left|\frac{G}{Z^{*}(G)}\right|<n^{n^{4}}$, where $Z^{*}(G)$ is the hypercentre of G. This result gives a bound for the size of every finite soluble centerless group satisfying the condition (\mathcal{N}, n). Abdollahi and Mohammadi Hassnabadi [1] study the class (\mathcal{N}, n) and they gave a bound only depending on n for the size of finite semisimple groups in (\mathcal{N}, n).

Now let G be a group and let $n>0$ be an integer. We say that a group G is in the class (\mathcal{S}, n) if every subset of G containing $n+1$ elements contains distinct elements x and y such that $\langle x\rangle$ and $\langle y\rangle$ are subnormal in $\langle x, y\rangle$. In this talk we study finite groups in the class (\mathcal{S}, n) and we show that the size of finite semisimple group G in (\mathcal{S}, n) is bounded by a function only depending on n. In fact we will see that $|G|<c^{2 n^{2}\left[\log _{60} n\right]}\left[\log _{60} n\right]!$ when $G \in(\mathcal{S}, n)$ is a finite semisimple group.

2 Main results

By definition it is clear that $(\mathcal{N}, n) \subset(\mathcal{S}, n)$. As we mentioned above Abdollahi and Mohammadi Hassnabadi [1] have shown that $|G|<c^{2 n^{2}\left[\log _{21} n\right]}\left[\log _{21} n\right]$! whenever $G \in(\mathcal{N}, n)$ is a finite semisimple group. In this section we improve this bound for finite semisimple groups in (\mathcal{S}, n). Before giving this bound we need some lemmas.

Lemma 2.1. Let G_{1}, \ldots, G_{t} are finite groups that $G_{i} \notin\left(\mathcal{S}, n_{i}\right)$, for some $1 \leq i \leq t$, and for $j \neq i$ $0<n_{j} \leq\left|G_{j}\right|$. Then $G_{1} \times \cdots \times G_{t}$ is not in (\mathcal{S}, n) where $n=n_{1} \cdots n_{t}$.

Remark 2.2. It is not difficult to see that if $G \in(\mathcal{S}, 1)$ then G is an Engel group and therefore G is nilpotent by a result of Zorn [6] if G is finite. Thus we have,

Corollary 2.3. If M_{1}, \ldots, M_{t} are finite simple groups, then $M_{1} \times \cdots \times M_{t}$ is not in $\left(\mathcal{S}, 60^{t-1}\right)$.
Lemma 2.4. Let G be a finite group in (\mathcal{S}, n) and let p be a prime dividing $|G|$. Then if $p \geq n$, then $Z^{*}(G) \neq 1$.

Corollary 2.5. If $G \in(\mathcal{S}, n)$ is a finite simple group, then $|G|<c^{n^{2}}$ where $c<n$ is a constant.
Theorem 2.6. Let $G \in(\mathcal{S}, n)$ be a finite semisimple group. Then $|G|<c^{2 n^{2}\left[\log _{60} n\right]}\left[\log _{60} n\right]$!.

References

[1] A. Abdollahi, A. A. Mohammadi Hassanabadi, Finite groups with a certain number of elements pairwise generating a non-nilpotent subgroup, Bulletin of the Iranian Mathematical Society, Vol. 30 No. 2 (2004), pp. 1-20.
[2] B. H. Neumann, A problem of Paul Erdos on groups, J. Austral. Math. Soc. Ser. A 21, (1976), pp. 467-472.
[3] L. Payber, The number of pairwise non-commuting elements and the index of the centre in a finite group, Journal of the London Mathematical Society, Vol. s2-35 Issue 2, (1987), pp. 287-295.
[4] J. E. Roseblade, On groups in which every subgroup is subnormal, J. Algebra 2, (1965), pp. 402-412.
[5] M. J. Tomkinson, Hypercentre-by-finite groups, Publ. Math. Debrecen 40 (1992), pp. 313-321.
[6] M. Zorn, Nilpotency of finite groups. Bull. Amer. Math. Soc. 42, (1936), pp. 485-486.
Email: khosravi@gonbad.ac.ir

[^0]: ${ }^{1}$ speaker

