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Abstract

The concept of Some properties of the second homology and cover of Leibniz algebras are established. By
constructing a stem cover, the second Leibniz homology and cover of abelian, Heisenberg Lie algebras and
cyclic Leibniz algebras are described. Also, for the dimension of a non-cyclic nilpotent Leibniz algebra L,
we obtain dim(HL2(L)) ≥ 2.
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1 Introduction

All algebras considered in this paper are finite dimensional over a field of characteristic different from 2.
The terminology and notations employed agree with the standard usage as in [3]. Leibniz algebras are
non-antisymmetric generalizations of Lie algebras. Loday (see [5, 6]) propounded a new type of algebras
satisfying only Leibniz relations when he tried to formulate the non-commutative homology of a Lie algebra
which is defined by replacing ⊗ by ∧ in the Chevalley-Eilenberg complex of a Lie algebra. Recently, the
theory of Leibniz algebras has been studied in some articles and several results of Lie algebras have been
developed to Leibniz algebras. An algebra L over a field K is called a (left) Leibniz algebra if for any a ∈ L
the left multiplication map la : L→ L given by la(x) = [a, x] is a derivation, i.e. for all x, y, z ∈ L

[x, [y, z]] = [[x, y]z] + [y, [x, z]].

Obviously, if [x, x] = 0 for all x ∈ L, then a Leibniz algebra is a Lie algebra and Leibniz identity becomes
the classical Jacobi identity.
It is well known that for a Leibniz algebra L, the space spanned by squares of elements, Leib(L) =
span{[x, x];x ∈ L}, is an ideal of L contained in the left center of L. Moreover,Leib(L) is the minimal
ideal of L with respect to the property that the quotient algebra L

/
Leib(L) is a Lie algebra.

For any Leibniz algebra L, there is a tensor complex associated to L:

CL∗(L) : · · · → L⊗n d→L⊗(n−1) d→· · · d→L 0→K

d(x1 ⊗ · · · ⊗ xn) :=
∑

1≤i≤j≤n
(−1)i(x1 ⊗ · · · ⊗ x̂i ⊗ · · · ⊗ [xi, xj ]⊗ xj+1 ⊗ · · · ⊗ xn)
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The Leibniz homology (with trivial coeffcients) of L is defined as

HL∗(L) := H∗(CL∗(L), d).

The Leibniz homology of L can be interpreted as

HL∗(L) = Tor∗UL(U(L
/
Leib(L)),K),

where U(L
/
Leib(L)) is the universal enveloping algebra of the quotient Lie algebra L

/
Leib(L) and UL is

the universal enveloping of the Leibniz algebra L. See [7] for more details. If L is a Leibniz algebra of
dimension n, then the maximal possible dimension for HLi(L) is ni which is met if and only if L is abelian.
In the following proposition, we refine this inequality in the second step.

Proposition 1.1. Let L be a n-dimensional Leibniz algebra. Then dim(L2) + dim(HL2(L)) ≤ n2.

2 Stem cover of Leibniz algebras

Wiegold (1965) obtained an estimate for the order of commutator subgroup of a p-group G in terms of the
order of G/Z(G). Later, Batten (1993) in her dissertation obtained a similar result for Lie algebras. We
start by establishing a parallel result for Leibniz algebra

Lemma 2.1. Let L be a Leibniz algebra such that dim(L/Z(L)) = n then dim(L2) ≤ n2.

Now, we go on to show that when equality holds in Lemma 2.1. We use the following notations through
rest of the paper

Z l = {x ∈ L : [x, L] = 0},
Z2(L) = {x ∈ L : [x, L], [L, x] ⊆ Z(L)}.

Proposition 2.2. Let L be a non-abelian nilpotent Leibniz algebra such that dim(L/Z(L)) = n and
dim(L2) = n2 then L/Z(L) is a Lie algebra.

Definition 2.3. For any integer n, let Ln = span{x1, · · · , xn, xij : 1 ≤ i, j ≤ n} be the (n2 +n)-dimensional
Leibniz algebra with [xi, xj ] = xij for all 1 ≤ i, j ≤ n and all other products of basis elements being zero.

Proposition 2.4. Let L be a non-abelian nilpotent Leibniz algebra such that dim(L/Z(L)) = n and
dim(L2) = n2. Then there exists an integers n such that L ∼= Ln ⊕ A, where A is a finite-dimensional
abelian Lie algebra.

Definition 2.5. Let (e) : 0 → N → K
π→L → 0 be a central extension of Leibniz algebras, then (e) (or

π according to the notations of category theory) is called a stem extension of L if the induced morphism
HL1(π) : HL1(K)→ HL1(L) is an isomorphism. Furthermore, (e) is called a stem cover if HL2(π) is zero.

Remark 2.6. If (e) : 0 → N → K
π→L → 0 is a stem extension of a finite-dimensional Leibniz algebra L

then by Lemma 2.1, N and consequently K are also of finite dimensions. Similar to contexts of Lie algebras,
(e) is called a maximal stem extension of L if dim(K) is maximal among all stem extensions of L.

Proposition 2.7. Let (e) : 0→ N → K → L→ 0 be a central extension of Leibniz algebras, then

(i) (e) is a stem extension if and only if N ⊆ L2.

(ii) If (e) is a stem cover, then (e) is isomorphic to (the unique class of) stem extension 0→ HL2(L)→
L◦ → L→ 0.

(iii) Every stem extension of L is an epimorphic image of some stem cover.
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Corollary 2.8. . Let L be a finite-dimensional Leibniz algebra, then (e) : 0→ N → L◦ → L→ 0 is a stem
cover of L if and only if L◦ has the maximal dimension among all stem extensions of L.

Remark 2.9. Suppose L is a Lie algebra. The Lie algebra L∗ is called a Lie cover of L if there exists an
ideal A ⊆ (L∗)2∩Z(L∗) such that A ∼= H2(L) and L∗/A ∼= L, where H2(L) is the second Chevalley-Eilenberg
homology of L. It is well known that L∗ has maximal dimension among all stem extensions of L in the
category of Lie algebras. Hence, besides Leibniz covers, we can think about Lie covers for a Lie algebra.

3 The second homology of nilpotent Leibniz algebras

Let L = 〈a〉 be a cyclic Leibniz algebra of dimension n and suppose {a, a2 = [a, a], · · · , ai = [a, ai−1], · · · , an}
is a basis for L. It can be easily checked that [a, an] = α2a

2 + · · · + αna
n for some α2, · · · , αn ∈ K. Note

that if L is a nilpotent Leibniz algebra, then we should have [a, an] = 0. In the following proposition, we
compute the second homology of a cyclic Leibniz algebra.

Proposition 3.1. Let L be a cyclic Leibniz algebra of dimension n. Then dim(HL2(L)) = 1.

Theorem 3.2. Let L be a nilpotent Leibniz algebra then HL2(L) is nontrivial. In particular, if L is a
nilpotent non-cyclic Leibniz algebra then dim(HL2(L)) ≥ 2.

Corollary 3.3. . Let L be a two-step nilpotent Lie algebra. Then

dim(L/Z(L)) ≤ dim(HL2(L)).

Now, we present the following general result to compare the Lie cover and Leibniz cover of a Lie algebra

Theorem 3.4. Let L be a finite-dimensional Lie algebra and L∗, L◦ be the Lie cover and Leibniz cover of
L, respectively. Then L∗ ∼= L◦/Leib(L◦).
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