$14^{\text {th }}$ Iranian International
Group Theory Conference

Some properties of the k-extension of $p-$ Fibonacci sequence

Elahe Mehraban ${ }^{1}$
University of Guilan, Rasht, Iran
Mansour Hashemi
University of Guilan, Rasht, Iran

Abstract

In this paper, By considering the k-extension of p-Fibonacci sequence, we obtain combinatorial identities. Also, by using the Riordan method, we get two factorizations of the Pascal matrix involving k-extension of p-Fibonacci sequence.

Keywords: k-extension of p-Fibonacci sequence, Riordan arrays, Pascal matrix.
Mathematics Subject Classification [2010]: 33C45, 42C05.

1 Introduction

The Fibonacci sequence is defined by the recurrence relation $f_{n}=f_{n-1}+f_{n-2}, n \geq 3$, with the initial values $f_{1}=f_{2}=1$.The Fibonacci sequence and its generalization Fibonacci number sequence have been studied for example in $[2,4]$. This sequence has been extended in many ways. One such extension that will be used in this paper are the p-Fibonacci sequence and the k-extension of the p-Fibonacci sequence (see [3]).

Definition 1.1. For $k, p \geq 1$, the k-extension of the p-Fibonacci sequence $\left\{f^{p}(k, n)\right\}_{-\infty}^{\infty}$ is given by the following recurrence relation:

$$
f^{p}(k, n)= \begin{cases}0, & n<1 \\ 1, & n=1 \\ k f^{p}(k, n-1)+f^{p}(k, n-p-1), & n>1\end{cases}
$$

For example if $k=1$ and $p=2$, we have $f^{2}(1, n)=f^{2}(1, n-1)+f^{2}(1, n-3)$ and $\left\{f^{2}(1, n)\right\}_{-\infty}^{\infty}=$ $\{\ldots, 0,1,1,1,2,3,4,6,9, \ldots\}$.
The $n \times n$ lower triangular Pascal matrix, denoted by $P_{n}=\left[p_{i j}\right]$, is defined as follows [1]:

$$
p_{i j}= \begin{cases}\binom{i-1}{j-1}, & \text { if } i \geq j, \\ 0, & \text { otherwise }\end{cases}
$$

The Riordan group was introduced in [5] as follows.
Let $R=\left[r_{i j}\right]_{i, j \geq 0}$ be an infinite matrix with complex entries. Let $C_{i}(t)=\sum_{n \geq 0}^{\infty} r_{n, i} t^{n}$ be the generating function of the ith coloum of R. We call R a Riordan matrix if $c_{i}(t)=g(t)[f(t)]^{i}$, where

$$
g(t)=1+g_{1} t+g_{2} t^{2}+g_{3} t^{3}+\cdots, \quad f(t)=t+f_{2} t^{2}+f_{3} t^{3}+\cdots .
$$

[^0]In this case we write $R=(g(t), f(t))$ and denote by R the set of Riordan matrices. Then the set R is a group under matrix multiplication $*$, with the following properties:
$(i)(g(t), f(t)) *(h(t), l(t))=(g(t) h(f(t)), l(f(t)))$,
(ii) $I=(1, t)$ is the identity element,
(iii) the inverse of R is given by $R^{-1}=\left(\frac{1}{g(\bar{f}(t)}, \bar{f}(t)\right)$, where $\bar{f}(t)$ is the compositional inverse of $f(t)$, that is, $f(\bar{f}(t))=\bar{f}(f(t))=t$.

2 Main results

In this section, first we obtain some results from the k-extension of the p-Fibonacci sequence. Then, we get two factorizations of the Pascal matrix involving k-extension of p-Fibonacci sequence.

Now, we define the $n \times n k$-extension of the p-Fibonacci matrix $(p \geq 2)$, denoted by $F_{(k, n)}^{p}=\left[f_{(k, i j)}^{p}\right]$, as follows:

$$
f_{(k, i j)}^{p}=f^{p}(k, i-j+1) .
$$

Theorem 2.1. For the inverse of the k-extension of the p-Fibonacci matrix, denoted by $\left(F_{(k, n)}^{p}\right)^{-1}=\left[f_{(k, i j)}^{\prime p}\right]$, we have

$$
f_{(k, i j)}^{\prime p}= \begin{cases}1, & \text { if } i=j \\ -k, & \text { if } j=i-1 \\ -1, & \text { if } j=i-(p+1) \\ 0, & \text { otherwise }\end{cases}
$$

Proof. To find the inverse of the k-extension of the p-Fibonacci matrix, we define the $n \times n$ matrix $U_{(k, n)}^{p}=$ $\left[u_{k, i j}^{p}\right]$ as follows:

$$
u_{k, i j}^{p}=\left[\begin{array}{ccccc}
f^{p}(k, 1) & 0 & 0 & \ldots & 0 \\
f^{p}(k, 2) & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \\
f^{p}(k, n) & 0 & 0 & \ldots & 1
\end{array}\right]
$$

Clearly, $U_{(k, n)}^{p}$ is invertible and

$$
\left(U_{(k, n)}^{p}\right)^{-1}=\left[\begin{array}{ccccc}
f^{P}(k, 1) & 0 & 0 & \ldots & 0 \\
-f^{P}(k, 2) & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \\
-f^{P}(k, n) & 0 & 0 & \ldots & 1
\end{array}\right]
$$

Hence,

$$
F_{(k, n)}^{p}=U_{(k, n)}^{p} \times\left(I_{1} \oplus U_{(k, n-1)}^{p}\right) \times\left(I_{2} \oplus U_{(k, n-2)}^{p}\right) \times \cdots \times\left(I_{n-2} \oplus U_{(2,2)}^{p}\right),
$$

where I_{j} is an identity matrix. Since $\left(I_{t} \oplus U_{(k, n-t)}^{p}\right)^{-1}=I_{t} \oplus\left(U_{(k, n-t)}^{p}\right)^{-1}$, we have

$$
\left(F_{(k, n)}^{p}\right)^{-1}=\left(I_{n-2} \oplus\left(U_{(k, 2)}^{p}\right)^{-1}\right) \times \cdots \times\left(I_{1} \oplus\left(U_{(k, n-1)}^{p}\right)^{-1}\right) \times\left(U_{(k, n)}^{p}\right)^{-1}
$$

Therefore,

$$
f_{(k, i j)}^{\prime p}= \begin{cases}1, & \text { if } i=j \\ -k, & \text { if } j=i-1 \\ -1, & \text { if } j=i-(p+1) \\ 0, & \text { otherwise }\end{cases}
$$

Theorem 2.2. Let $g_{f}(t)$ be the generating function of the k-extension of the p-Fibonacci sequence. Then,

$$
g_{f}(t)=\frac{t}{1-k t-t^{p+1}}
$$

Proof. Let $g_{f}(t)$ be the generating functions of the k-extension of the p-Fibonacci sequence $f^{p}(k, n)$, then

$$
\begin{aligned}
g_{f}(t) & =\sum_{n=0}^{\infty} f^{p}(k, n) t^{n} \\
& =t+k t^{2}+\sum_{n=3}^{\infty} k f^{p}(k, n-1) t^{n-1}+\sum_{n=3}^{\infty} f^{p}(k, n-p-1) t^{n-p-1} \\
& =t+k t^{2}+k+\sum_{n=2}^{\infty} k f^{p}(k, n) t^{n}+t^{p+1} \sum_{n=3-p+1}^{\infty} f^{p}(k, n) t^{n} \\
& =t+k t^{2}+k t\left(g_{f}(t)-t\right)+t^{p+1} g_{f}(t)
\end{aligned}
$$

By taking $g_{f}(t)$ parenthesis we get

$$
g_{f}(t)=\frac{t}{1-k t-t^{p+1}}
$$

Lemma 2.3. For $k, p \geq 1$, the k-extension of the p-Fibonacci sequence have the following exponetial representating:

$$
g_{f}(t)=t \exp \left(\sum_{n=1}^{\infty} \frac{t^{n}}{n}\left(k+t^{p}\right)^{n}\right)
$$

Proof. Since

$$
\ln g_{f}(t)=\ln t-\ln \left(1-k t-t^{p+1}\right)
$$

and we have

$$
-\ln \left(1-k t-t^{p+1}\right)=-\left(-t\left(k+t^{p}\right)-\frac{t^{2}}{2}\left(k+t^{p}\right)^{2}-\frac{t^{n}}{n}\left(k+t^{p}\right)^{n}-\cdots\right)
$$

Therefore,

$$
\ln \frac{g_{f}(t)}{t}=\exp \left(\sum_{n=1}^{\infty} \frac{t^{n}}{n}\left(k+t^{p}\right)^{n}\right)
$$

Here, we define an infinite k-extension of the p-Fibonacci matrix.

Definition 2.4. For $k, p \geq 1$, the k-extension of the p-Fibonacci matrix, denoted by $F(x)=\left[F^{p}(k, n)\right]$, as follows:

$$
F(x)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \cdots \\
k & 1 & 0 & 0 & 0 & \cdots \\
k^{2}+f^{p}(k, 3-p-1) & k & 1 & 0 & 0 & \cdots \\
k^{3}+f^{p}(k, 4-p-1) & k^{2}+f^{p}(k, 3-p-1) & k & 1 & 0 & \cdots \\
: & : & : & : & : & :
\end{array}\right]=\left(g_{F(x)}(t), f_{F(x)}(t)\right)
$$

The matrix $F(x)$ is an element of the set of Riordan matrices. Since the first column of $F(x)$ is

$$
\left(1, k, k^{2}+f^{p}(k, 3-p-1), k^{3}+f^{p}(k, 4-p-1), k^{2}+f^{p}(k, 3-p-1), \cdots\right)^{T}
$$

Then it is obvious that $g_{F(x)}(t)=\sum_{n=0}^{\infty} f^{p}(k, n-p-1) t^{n}=\frac{t}{1-k t-t^{p+1}}$. In the matrix $F(x)$ each entry has a rule the upper two rows, that is,

$$
f^{p}(k, n)= \begin{cases}0, & n<1 \\ 1, & n=1 \\ k f^{p}(k, n-1)+f^{p}(k, n-p-1), & n>1\end{cases}
$$

Then $f_{F(x)}(t)=t$, that is

$$
F(x)=\left(g_{F(x)}(t), f_{F(x)}(t)\right)=\left(\frac{1}{1-k t-t^{p+1}}, t\right)
$$

hence $F(x)$ is R. For these factorization, we need to define matrix $M(x)=\left(m_{i j}(x)\right)$, as follows:

$$
\begin{equation*}
m_{i j}(x)=\binom{i-1}{j-1}-k\binom{i-2}{j-1}-\binom{i-(p+2)}{j-1} \tag{1}
\end{equation*}
$$

we have the infinite matrix $M(x)$ as follows:

$$
M(x)=\left[\begin{array}{cccc}
1 & 0 & 0 & \cdots \tag{2}\\
1-k & 1 & 0 & \cdots \\
: & : & : & :
\end{array}\right]
$$

Theorem 2.5. Let $M(x)$ be the infinite matrix as (2.2) and $F(x)$ be the infinite k-extension of the p-Fibonacci matrix. Then $P(x)=F(x) * M(x)$, where P is the Pascal matrix.

Proof. From the definitions of the infinite Pascal matrix and the infinite k-extension of the p-Fibonacci matrix we have the following Riordan representing

$$
P(x)=\left(\frac{1}{1-t}, \frac{t}{1-t}\right), \quad F(x)=\left(\frac{1}{1-k t-t^{p+1}}, t\right)
$$

Now we can find the Riordan representation of infinite matrix

$$
M(x)=\left(g_{M(x)(t)}, f_{M(x)}(t)\right)
$$

as follows:

$$
M(x)=\left[\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
1-k & 1 & 0 & \cdots \\
: & : & : & :
\end{array}\right]
$$

From the first colum of the matrix $M(x)$ we obtain $M(x)=F^{-1}(x) * P(x)$ and

$$
F^{-1}(x)=\left(g_{F(x)}(t), f_{F(x)}(t)\right)^{-1}=\left(1-k t-t^{p+1}, t\right)
$$

we have

$$
M(x)=\left(\frac{1-k t-t^{p+1}}{1-t}, \frac{t}{1-t}\right)
$$

complete the proof.

Now we define the matrix $B(x)=\left(b_{i j}(x)\right)$ as follows

$$
b_{i j}(x)=\binom{i-1}{j-1}-k\binom{i-1}{j}-\binom{i-1}{j+p}
$$

we have the infinite matrix $B(x)$ as follows

$$
B(x)=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \tag{3}\\
1-k & 1 & 0 & 0 & \cdots \\
1-2 k-\binom{2}{1+p} & 1-k & 1 & 0 & \cdots \\
: & : & : & : &
\end{array}\right]
$$

Lemma 2.6. Let $B(x)$ be the matrix in (2.3), we have $P=B(x) * F(x)$.
Proof. The proof is similar to that of Theorem 2.6.

Acknowledgment

The authors thank to the referees.

References

[1] R. Brawer and M. Pirovino, The Linear algebra of the Pascal matrix, Linear Algebra Appl, 174 (1992), pp. 13-23.
[2] O. Deveci and A. Shannon, The quaternion-Pell sequence, Commun. Algebra. 49(2) (2018), pp. 1-7.
[3] M. Hashemi and E. Mehraban, Factorization of the t-extension of the p-Fibonacci matrix and Pascal matrix. J. Math. Model. (2021). DOI: 10.22124/jmm.2021.18678.1597.
[4] M. Hashemi and E. Mehraban, Fibonacci length and the generalized order k-Pell sequences of the 2generator p-groups of nilpotency class 2, J. Algebra Appl, (2021), In press.
[5] L. W. Shapiro, S. Getu, W. J. Woan, and L. C. Woodson, The Riordan group, Discrete Applied Mathematics, vol. 34, no. 1-3, (1991), pp. 229-239.

Email: e.mehraban.math@gmail.com
Email: m _hashemi@guilan.ac.ir

[^0]: ${ }^{1}$ speaker

