The 2-pell number sequence of Fibonacci group $F(r, 2)$

Mohaddese Shafiee sarvestani, Azade Rajabinejad, Mansour Hashemi
Faculty of Mathematical Sciences, University of Guilan,
Rasht, Iran
m.shafiee73@yahoo.com, a.rajabinejad1373@gmail.com, m_hashemi@guilan.ac.ir

ABSTRACT

In this paper we consider the Fibonacci group $\mathrm{F}(\mathrm{r}, 2)$, in which r odd, defined by the presentation:

$$
F(r, 2)=\left\langle a_{1} \cdot a_{2} \left\lvert\,\left(a_{1} a_{2}\right)^{\frac{(r-1)}{2}}=a_{2} a_{1}^{-1}\right.,\left(a_{2} a_{1}\right)^{\frac{(r-1)}{2}}=a_{1} a_{2}^{-1}\right\rangle
$$

Then we obtain the period of the generalized order 2-pell sequence of this group.
KEYWORDS: period, generalized order 2-pell sequence, Fibonacci group F(r,2)

INTRODUCTION

The k-Pell number sequence $\left\{P_{n}^{k}\right\}_{n=0}^{\infty}$ is defined by:

$$
\begin{equation*}
P_{n}^{k}=2 P_{n-1}^{k}+P_{n-2}^{k}+\cdots+P_{n-k}^{k} \quad n \geq k ; \tag{1}
\end{equation*}
$$

with initial conditions $P_{0}^{k}=0 . P_{1}^{k}=0 \ldots . P_{k-2}^{k}=0$ and $P_{k-1}^{k}=1$. We use $h P_{k}(m)$ to denoted the minimal length of the period of the k -Pell number sequence $\left\{P_{n}^{k}(\bmod m)\right\}_{n=0}^{\infty}$. The generalized order kPell sequence and their properties have been studied by several authors, for example see [1, 2, 3, 4, 5]. For example: $P_{n}^{2}=2 P_{n-1}^{2}+P_{n-2}^{2}$. Then $\left\{P_{n}^{2}\right\}_{n=0}^{\infty}=\{0,1,2,5,12,29,70,169,408,985,2378,5741,13860$, $33461,80782,195025,470832,1136689,2744210,6625109,15994428, \ldots\}$ and $\left\{\left\{P_{n}^{2}\right\}(\bmod 5)\right\}=$ \{0.1.2.0.2.4.0. ... \}.

We now discuss the period of the generalized order 2-pell sequence of the Fibonacci group $F(r, 2)$.
Definition1.1. Let $\mathrm{X}=\left\{a_{0} \cdot a_{1}, \ldots . a_{j-1}\right\}$ and $\mathrm{G}=\langle X>$ be a finite group. A generalized order k-Pell sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ of G is defined as follows:

$$
x_{n}=\left\{\begin{array}{lc}
a_{n} & n \leq j-1 \tag{2}\\
x_{1} x_{2} \ldots\left(x_{n-1}\right)^{2} & j-1<n \leq k \\
x_{n-k} \ldots\left(x_{n-1}\right)^{2} & n>k .
\end{array}\right.
$$

Here, we discuss the period of the generalized order 2-Pell sequence of the Fibonacci groups $F(r, 2)$, in which r odd, defined by the representation

$$
\begin{equation*}
F(r, 2)=\left\langle a_{1} \cdot a_{2} \left\lvert\,\left(a_{1} a_{2}\right)^{\frac{(r-1)}{2}}=a_{2} a_{1}^{-1}\right.,\left(a_{2} a_{1}\right)^{\frac{(r-1)}{2}}=a_{1} a_{2}^{-1}\right\rangle \tag{3}
\end{equation*}
$$

Lemma 1.1. The relations of $F(r, 2)$ imply the relation $a_{1}^{2}=a_{2}^{2}$.
Proof. See [6].

2 THE FIBONACCI LENGTH OF $\boldsymbol{F}(\boldsymbol{R}, 2)$

Now we find a standard form for the 2-Pell sequence x_{0}, x_{1}, \ldots of $F(r, 2)$.
Lemma 2.1. Let x_{0}, x_{1}, \ldots be the 2-Pell sequence of $F(r, 2)$, with $x_{0}=a_{1}, x_{1}=a_{2}$. Then for every $w \geq 2$, we have
$x_{w}= \begin{cases}a_{1}^{P_{w+1}-P_{w}} & w \equiv 0(\bmod 2) \\ a_{2}^{P_{w}+P_{w-1}} & w \equiv 1(\bmod 2)\end{cases}$
Proof. We use induction on w. We have $x_{0}=a_{1}=a_{1}^{P_{1}-P_{0}} \cdot x_{1}=a_{2}=a_{2}^{P_{1}+P_{0}}$.
Now assume that the result holds for all integers less than w, we consider two cases as following:

1) Let $w \equiv 1(\bmod 2)$. Then we have $x_{w-2}=a_{2}^{P_{w-2}+P_{w-3}}, x_{w-1}=a_{1}^{P_{w}-P_{w-1}}$.

Using the fact that the relation $a_{1}^{2}=a_{2}^{2}$ holds in $F(r, 2)$, we have

$$
\begin{align*}
x_{w}=x_{w-2} x_{w-1}{ }^{2} & =a_{2} P_{w-2}+P_{w-3}\left(a_{1}^{2}\right)^{P_{w}-P_{w-1}}=a_{2} P_{w-2}+P_{w-3}\left(a_{2}{ }^{2}\right)^{P_{w}-P_{w-1}} \\
& =a_{2} P_{w-2}+P_{w-3}+2 P_{w}-2 P_{w-1} \tag{5}
\end{align*}=a_{2}^{2 P_{w-2}+P_{w-3}-P_{w-2}+2 P_{w}-2 P_{w-1}} .
$$

2) Let $w \equiv 0(\bmod 2)$. Then $x_{w-2}=a_{1}^{P_{w-1}-P_{w-2}}, x_{w-1}=a_{2}^{P_{w-1}+P_{w-2}}$.

Now by definition of x_{w}, we get

$$
\begin{gather*}
x_{w}=x_{w-2} x_{w-1}{ }^{2}=a_{1} P_{w-1}-P_{w-2}\left(a_{2}{ }^{2}\right)^{P_{w-1}-P_{w-2}}=a_{1} P_{w-1}-P_{w-2}\left(a_{1}{ }^{2}\right)^{P_{w-1}-P_{w-2}} \\
=a_{1}{ }^{3 P_{w-1}+P_{w-2}}=a_{1}{ }^{P_{w}+P_{w-1}}=a_{1}{ }^{2 P_{w}+P_{w-1}-P_{w}}=a_{1}{ }^{P_{w+1}-P_{w}} . \tag{6}
\end{gather*}
$$

Thus the assertion holds.
Theorem 2.2. If w is odd number then $P_{w}+P_{w-1}$ is odd number.
Proof. Use an induction method on w. We have for $w=1 ; P_{w}+P_{w-1}=1$. Then

$$
\begin{equation*}
P_{w}+P_{w-1}=2 P_{w-1}+P_{w-2}+2 P_{w-2}+P_{w-3}=2\left(P_{w-1}+P_{w-2}\right)+P_{w-2}+P_{w-3} . \tag{7}
\end{equation*}
$$

Then by the hypothesis of induction, the assertion holds.
Theorem 2.3. let $G=F(r, 2)$, then per $Q_{2}(G . X)=h P_{2}(r-1)$.
Proof. By the above lemma $w=$ per $Q_{2}(G . X)$ even. Then we have

$$
\left\{\begin{array}{c}
x_{w}=a_{1}^{P_{w+1}-P_{w}}=a_{1} \tag{8}\\
x_{w+1}=a_{2}^{P_{w+1}+P_{w}}=a_{2} .
\end{array}\right.
$$

Thus we get,

$$
\left\{\begin{array}{l}
P_{w+1}-P_{w} \equiv 1(\bmod 2(r-1)) \tag{9}\\
P_{w+1}+P_{w} \equiv 1(\bmod 2(r-1))
\end{array}\right.
$$

So that,
$\left\{\begin{array}{c}2 P_{w} \equiv 0(\bmod 2(r-1)) \\ 2 P_{w+1} \equiv 2(\bmod 2(r-1))\end{array}\right.$
and,

$$
\left\{\begin{array}{c}
P_{w} \equiv 0(\bmod (r-1)) \tag{11}\\
P_{w+1} \equiv 1(\bmod (r-1))
\end{array}\right.
$$

Then,

$$
\begin{equation*}
w=h P_{2}(r-1) . \tag{12}
\end{equation*}
$$

Thus the result holds.

REFERENCES

[1] Campbell, C.M., Campbell, P.P., Doostie, H. and Robertson, E.F., "Fibonacci lengths for certain metacyclic groups," Algebra Colloquium. Vol. 11, 2004, pp. 215-222. Algebra Colloquium.
[2] Deveci, O. "The k-nacci sequences and the generalized order-k Pell sequences in the semi-direct product of finite cyclic groups," Chiang Mai Journal of Science, 40(1), 2013, pp. 89-98.
[3] Deveci, O. and Karaduman, E., 2015. The Pell sequences in finite groups. Util. Math, 96, pp.263-276.
[4] Ercolano, J., "Matrix generators of Pell sequences," Fibonacci Quart, 17(1), 1979, pp. 71-77.
[5] Karaduman, E. and Aydin. H. "On the periods of 2-step general Fibonacci sequences in dihedral groups," Matematički vesnik, 58(1-2), 2006, pp.47-56.
[6] Campbell, P.P., "Fibonacci length and efficiency in group presentations," University of St. Andrews (United Kingdom), 2003.

