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Abstract

Differential equations, in particular nonlinear equations, are widely used in formulating many math-
ematical models and physical problems. However, a few nonlinear differential equations can be solved
explicitly. The main purpose of this work is to present a method to obtain exact solutions to first-order
Nonlinear Ordinary Differential Equations (NODEs) using Lie symmetry groups. These symmetry groups
of NODEs are discussed. Symmetry groups are used to find appropriate change of variables that convert
a given first-order NODE into separable form.
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1 Introduction

There are many different standard techniques to obtain exact solutions of Ordinary Differential Equations
(ODEs). But, most of these methods can be applied only for particular types of ODEs such as separa-
ble,homogeneous,exact..etc. Marius Sophus Lie who was a Norwegian mathematician discovered that most
of these solution techniques are based on the group of continuous symmetries of ODEs[1] and introduced
the notion of continuous groups, which is called Lie groups in order to obtain exact solutions to ODEs[7].
Solution methods under Lie groups are called Lie symmetry methods and the importance of these methods
is that we are able to apply Lie symmetry methods to ODEs that do not fit into standard types that are
considered above.

Nonlinear Ordinary Differential Equations (NODEs) are widely used in formulating many mathematical
models and physical problems. But, a few NODEs can be solved explicitly [2]. The most of the standard
solution methods are insufficient to obtain exact solutions to NODEs [6]. In this paper, we present basic
theories and definitions of continuous symmetry groups of ODEs called Lie groups of symmetries and use Lie
groups of symmetries to obtain exact solutions to first order NODEs. Mainly, the Lie groups of symmetries
of a given first-order NODE can be applied to obtain appropriate change of variables that can be used to
convert the NODE into separable form.

1Speaker: Disanayakage Hashan Sanjaya Perera

33



34 Disanayakage Hashan Sanjaya Perera , Dilruk Gallage

2 Symmetry groups of ODEs.

To understand the symmetries of ODEs it is helpful to understand the symmetries of planer objects[3].
Consider clockwise rotations of the angles 2π

3 ,
4π
3 and 2π about the center of equilateral triangle. Since these

transformations leave the object apparently unchanged these transformations can be considered as symme-
tries of the equilateral triangle and flips about three axes also can be considered as symmetries[3]. Hence
this triangle has six different symmetries. These symmetries are considered as discrete symmetries since
they can’t be represented by a continuous parameter[3]. Symmetries are called continuous symmetries if
it can be represented by at least one parameter which can be continuously varied. In this paper we restrict
our attention to continuous and smooth symmetries.

Definition 2.1. A Transformation can be considered as smooth symmetry if it satisfies following three
conditions[3].

1. The transformation preserves the structure of the object.

2. Transformation is a diffeomorphism

3. Symmetry condition of the object should be satisfied by the transformation.

In this paper we find symmetries for family of solution curves of a given ODE. Therefore rigid curves can
be considered as the structure of the objects. Bijective and Infinitely differentiable mapping with infinitely
differentiable inverse is called diffeomorphism. Since any symmetry has a unique inverse that is also a
symmetry[3] smooth symmetry is a diffeomorpism. A diffeomorphism exits between two open subsets of R2

does not change the properties of objects defined on its domain[1]. A mathematical object and its image
under the summery are indistinguishable. That phenomena is called symmetry condition of the object
[3]. Symmetries of differential equations will be discussed under the next definition interpreted from [7].

Definition 2.2. Let v = (x1, x2, ..., xn) ,v ∈ D,D ⊂ Rn.The set of transformations

Pε : v → v∗ = ψ(v, ε)

defined for each v ∈ D depending on parameter ε ∈ S,S ⊂ R,forms a one parameter Lie group of transfor-
mations on D if it satisfies following conditions. φ(ε, δ) is the law of composition of parameters ε, δ ∈ S

1. ∀ε; ε ∈ S the transformations are bijections in D, in particular v∗ ∈ D.

2. S and φ form a group G and ε = 0 corresponds to the identity element e of G

3. ε is a continuous parameter, i.e S ⊂ R .

4. v∗ = v when ε = e , i.e

ψ(v, e) = v

5. If v∗ = ψ(v, ε) and v∗∗ = ψ(v∗, δ) then

v∗∗ = ψ(ψ(v, ε), δ) = ψ(v, φ(ε, δ))

6. ψ is infinitely differentible with respect to v ∈ D and analytic function of ε ∈ S.

7. φ(ε, δ) is an analytic function of ε and δ.

In above definition v∗ represents the transformed point (x∗1, x
∗
2, ..., x

∗
n). According to the definition 2.2

these point transformations depend on one continuous parameter ε. The group formed by set s and φ is
called Local Lie group[1]. The group of transformations is defined based on this Local Lie group and
composition of transformations is the group operation. In this paper composition of two transformations is
denoted by o . Next we present how these group of transformations satisfy all group axioms. Notice that
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PδoPε = Pφ(ε,δ) corresponds to ψ(ψ(v, ε), δ) = ψ(v, φ(ε, δ)).
Let ε, δ ∈ S. Then

PεoPδ = Pφ(δ,ε)

By condition 2, φ(δ, ε) ∈ S.Therefore Pφ(δ,ε) is also a transformation of the set of transformations. Hence
Closure property is satisfied.
Let ε, δ, α ∈ S. By condition 2, φ(φ(δ, ε), α) = φ(δ, φ(ε, α)).Then

Pαo(PεoPδ) = Pφ(φ(δ,ε),α) = Pφ(δ,φ(ε,α)) = (PαoPε)oPδ

Hence Associative property is satisfied.
Let ε ∈ S. By conditions 2, φ(ε, 0) = ε = φ(0, ε). Then

PεoP0 = Pφ(0,ε) = Pε = Pφ(ε,0) = P0oPε

Hence P0 is the Identity transformation.
Let ε ∈ S and ε−1 ∈ S be the unique inverse element of ε in group G. By condition 2, φ(ε, ε−1) = φ(ε−1, ε) =
0.Therefore

PεoPε−1 = Pφ(ε−1,ε) = P0 = Pφ(ε,ε−1) = Pε−1oPε

Therefore for every transformation Pε there exists unique inverse Pε−1 . Since ε is a continuous parameter
there are infinitely many elements in this group of transformations. Using conditions 2, 3, 4 and 5 we can
obtain following result.

ψ(v∗, ε−1) = ψ(ψ(v, ε), ε−1)

= ψ(v, φ(ε, ε−1))

= ψ(v, 0)

= v

Therefore inverse transformation of v∗ = ψ(v, ε) is given by ψ(v∗, ε−1). According to condition 6 ψ(v, ε)
is infinitely differentiable with respect to v. It is a differentiation in higher dimension. Since ψ(v, ε) is
infinitely differentiable with respect to v , ψ(v∗, ε−1) is infinitely differentiable with respect to v∗. Hence
ψ(v, ε) is a diffeomorphism. Therefore one parameter Lie group of transformations can be considerd as a
diffeomorphism group. In this paper following notations are used to represent One parameter Lie group of
transformations acting on space R2.

v∗ = (x∗, y∗) = ψ(v, ε) = (X(x, y; ε), Y (x, y; ε)) (1)

where v = (x, y) , X and Y represents smooth functions and ε is a real parameter.
One parameter Lie group of transformations can be considered as symmetry group of a ODE if the

transformations map any solution curve into another solution curve [1]. A Lie group of transformations is
said to be admitted by a ODE if it is a symmetry group of that ODE [7].

Consider a one parameter Lie group of transformations admitted by a ODE. Then this group of trans-
formations map any solution curve of the ODE into another solution curve. Therefore family of solution
curves of the ODE and its image under the transformations are indistinguishable.Then that one parameter
Lie group of transformations satisfies the symmetry condition of family of solution curves called symmetry
condition of the ODE. Mathematical expression for the symmetry condition of ODEs is given in next
definition interpreted based on [3] .

Definition 2.3. Consider the ordinary differential equation given by dny
dxn = f(x, y, y

1
, y
2
, ..., y

n−1
). Let v∗ =

ψ(v, ε) be a one parameter Lie group of transformations that admitted by f(x, y, y
1
, y
2
, ..., y

n−1
) where v∗ =

(x∗, y∗), v = (x, y) and ε is a real parameter. Then the symmetry condition of f(x, y, y
1
, y
2
, ..., y

n−1
) is given

by
dny∗

dx∗n
= f(x∗, y∗, y∗

1
, y∗
2
, ..., y∗

n−1
) when

dny

dxn
= f(x, y, y

1
, y
2
, .., y

n−1
). (2)

where y
k

= dky
dxk

and y∗
k

= dky∗

dx∗k
, k = 1, 2, ..., n
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The symmetry condition of a ODE (2) implies that solution curves in (x, y)-plane and its image in
(x∗, y∗)-plane are indistinguishable. Hence Lie group symmetry admitted by a ODE map its family of
solution curves to itself .Therefore obviously transformations preserve the structure(rigid curves) of family
of solution curves. Hence one parameter Lie group of transformations admitted by a ODE satisfy all
three conditions in definition 2.1 and this group of transformations is called (Lie group of symmetries).
Following example illustrates how one parameter Lie group of transformations admitted by a ODE satisfy
the symmetry condition of the ODE.

Example 2.4. For this example a differential equation is taken from exercises of [5]. Consider the non
linear first order differential equation dy

dx = 2y2 + xy3. It admits one parameter Lie group of transformation
given by

v∗ = ψ(v, ε) = (eεx, e−εy)

where v∗ = (x∗, y∗), v = (x, y) and ε is a real parameter. We can check whether this is a symmetry group
or not for the given ODE by checking the symmetry condition of the ODE. By the chain rule.

dy∗

dx∗
=
dy∗

dx
/
dx∗

dx

=
e−εy′

eε

= e−2ε
dy

dx

Then we can obtain 2y∗2 + x∗y∗3 in terms of x and y by substituting the transformations.

2y∗2 + x∗y∗3 = 2.e−2εy2 + eεxe−3εy3

= 2.e−2ε(y2 + xy3)

= e−2ε
dy

dx

Therefore we can obtain
dy∗

dx∗
= 2y∗2 + x∗y∗3

Therefore dy∗

dx∗ = 2y∗2 + x∗y∗3 when dy
dx = 2y2 + xy3 . Hence v∗ = ψ(v, ε) satisfies the symmetry condition of

given ODE.

Definition 2.5. By expanding v∗ about ε=0 in Taylor series we get

v∗ = v + ε(
∂ψ(v, ε)

∂ε

∣∣∣∣
ε=0

) +
ε2

2
(
∂2ψ(v, ε)

∂ε2

∣∣∣∣
ε=0

) + ...

v∗ = v + ε(
∂ψ(v, ε)

∂ε

∣∣∣∣
ε=0

) +O(ε2)

ϑ(v) =
∂ψ(v, ε)

∂ε

∣∣∣∣
ε=0

(3)

ϑ(v) are called the infinitesimals of Lie group of transformations and following equation is called infinites-
imal generator of Lie group of transformations

X = X(v) =

n∑
i=1

ϑi(v)
∂

∂vi
(4)

The infinitesimals of One parameter Lie group of transformations acting on R2 space 1 are represented
by the standard notations ξ(x, y) and η(x, y) where

ϑ(v) = (
dx∗

dε
|ε=0,

dy∗

dε
|ε=0) = (ξ(x, y), η(x, y))
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Then the infinitesimal generator becomes

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y

(ξ(x, y), η(x, y)) represents tangent vector field of the corresponding one parameter Lie group of transformations[3].

2.1 Linearized Symmetry Condition of First Oder ODEs.

Under this subsection we present how to obtain infinitesimals of Lie group symmetries that admitted by a
given ODE.

Consider the first order ordinary differential equation given by dy
dx = f(x, y). Let v∗ = ψ(v, ε) be a one

parameter Lie group of transformations that admitted by f(x, y) where v∗ = (x∗, y∗), v = (x, y) and ε is a
real parameter. Let x∗ = X(x, y; ε) and y∗ = Y (x, y; ε) where X and Y are two functions of x, y and ε.
According to the symmetry condition (2)

dy∗

dx∗ = f(x∗, y∗) when dy
dx = f(x, y)

Then by total derivative operator
Dyy

∗

Dxx∗
=
y∗x + y′y∗y
x∗x + y′x∗y

= f(x∗, y∗) (5)

when dy
dx = f(x, y). By expanding x∗, y∗ and f(x∗, y∗) in Taylor series about ε = 0 we can obtain

x∗ = X(x, y; ε) = x+ εξ(x, y) +O(ε2)

y∗ = Y (x, y; ε) = y + εη(x, y) +O(ε2)

f(x∗, y∗) = f(x, y) + ε(fx(x, y)ξ(x, y) + fy(x, y)η(x, y)) +O(ε2)

(6)

Then by substituting equations 6 into 5 and ignoring terms of order ε2 and higher.

f + ε(ηx + fηy)

1 + ε(ξx + fξy)
= f + ε(fxξ + fyη)

Then by simplifying we can obtain

ηx − ξyf2 + (ηy − ηx)f = ξfx + ηfy (7)

By solving 7 with given ODE we can obtain general solutions for the infinitesimals of Lie symmetries that
admitted by the given ODE.The equation 7 is called Linearized symmetry condition of first order ODEs.
Following example illustrates how to find infinitesimals of Lie group of symmetries admitted by a given ODE
using this Linearized symmetry condition.

Example 2.6. Consider the non linear ordinary differential equation dy
dx = f(x, y) = xy2 − 2y

x −
1
x3

Then
the Linearized symmetry condition 7 becomes

ηx − ξy(xy2 −
2y

x
− 1

x3
)2 + (ηy − ηx)(xy2 − 2y

x
− 1

x3
) = ξ(y2 +

2y

x2
+

1

x4
) + η(2yx− 2

x
)

To solve the Linearized symmetry condition an assumption should be made about the form of the infinites-
imals. Assume that ξ(x, y) = A(x) and η(x, y) = B(x)y where A and B are functions of x. Then Linerized
symmetry condition becomes

B′y + (B −A′)(xy2 − 2y

x
− 1

x3
) = A(y2 +

2y

x2
+

3

x4
) + (B)(y)(2yx− 2

x
)

Then by taking all the terms into R.H.S and multiplying by x4 we can obtain

′yx4 + (B −A′)(x5y2 − 2x3y − x)−A(x4y2 + 2x2y + 3)−B(2x5y2 − 2x3y) = 0 (8)
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Let y = 0, then above equation becomes (B −A′)(−x)− 3A = 0.

B = A′ − 3A

x
(9)

Then by comparing coefficients of y2 in R.H.S and L.H.S of 11 we can obtain

(B −A′)(x5)−A(x4)−B(2x5) = 0

(−B −A′)x−A = 0

By substituting 9 ,

(−2A′x+ 3A)−A = 0

A′ =
A

x

By solving above ODE we can obtain

ξ(x, y) = A(x) = cx, c ∈ R

By substituting A(x) = cx to equation 9

B = c− 3cx

x
= −2c

Then η(x, y) = B(x)y = −2cy.

Notice that if a ODE admits one parameter Lie group of transformations given by

(x∗, y∗) = (x, y + ε) (10)

then one solution curve of the ODE is mapped to any other solution curves into the direction of y without
changing the variable x. It implies that the ODE does not depend on the variable y. Hence it exits in
variable separable form.Following justification is interpreted based on [3]

Proof. Let dy
dx = f(x, y) be the given ODE. Then assume that it admits 10 . By the symmetry condition of

dy
dx = f(x, y) we can obtain

dy∗

dx∗
= f(x∗, y∗) = f(x, y + ε)

Using total derivative operator

dy∗

dx∗
=
y∗x + y∗y .y

′

x∗x + x∗y.y
′

=
dy

dx
= f(x, y)

Therefore f(x, y + ε) = f(x, y). Hence f(x, y) does not depend on variable s. Then the ODE dy
dx = f(x, y)

can be written in the form dy
dx = f(x). Therefore under this change of variable given ODE exits in variable

separable form.
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Let v∗ = ψ(v, ε) be a Lie group of symmetries admitted by a given ODE f(x, y) where v∗ = (x∗, y∗) and
v = (x, y). Then our aim is to find suitable change of variables that convert ψ(v, ε) into 10 . Then under
this change of variables given ODE exits in variable separable form since it admits v∗ = ψ(v, ε) in terms of
new variables. Hence we introduce coordinates

(r, s) = (r(x, y), s(x, y))

such that

(r∗, s∗) = (r(x∗, y∗), s(x∗, y∗)) = (r, s+ ε) (11)

[3].

According to transformations 11
dr∗

dε

∣∣∣∣
ε=0

= 0

By chain rule

ξ(x, y)rx + η(x, y)ry = 0 (12)

Similarly we can obtain

ξ(x, y)sx + η(x, y)sy = 1 (13)

Hence

Xr = 0 Xs = 1

where X is the infinitesimal generator of v∗. And these coordinates should be invariable. Hence these
coordinates should satisfy following property

rxsy − rysx 6= 0 (14)

Coordinates that satisfies 12,13 and 14 are called Canonical coordinates of corresponding one parameter
Lie group of transformations[3]. By solving the partial differential equations 12 and 13 using method of
characteristics we can obtain the coordinates r and s. Following two examples illustrate how to obtain exact
solutions of NODEs by converting them into variable separable form using these canonical coordinates of
its admitted Lie group of symmetries.

Example 2.7. For this example a differential equation is taken from [3] to find general solution using Lie
symmetries and illustrate invariant curves.
Consider the Ricaati type first order non linear ordinary differential equation

dy

dx
= xy2 − 2y

x
− 1

x3

In example 2.6 we obtained general solutions for the infinitesimals of One parameter Lie group of transfor-
mations that admitted by above ODE. ξ(x, y) = cx and η(x, y) = −2cy. Let c = 1.Then the infinitesimals
become (x,−2y ). Then the infinitesimal generator is given by

X = x
∂

∂x
− 2y

∂

∂y

Let (r, s) be canonical coordinates of the One parameter Lie group of transformations. Then the equations
12 and 13 become

x
∂r

∂x
− 2y

∂r

∂y
= 0

x
∂s

∂x
− 2y

∂s

∂y
= 1



40 Disanayakage Hashan Sanjaya Perera , Dilruk Gallage

Then we can obtain the independent coordinate r by solving the characteristic equation dx
x = dy

−2y .∫
dx

x
=

∫
dy

−2y

y = cx−2

c = x2y, c ∈ R

Therefore r(x, y) = c = x2y. we can find the dependent coordinate s by solving the characteristic equation
dx
x = dy

−2y = ds
1 .

s(x, y) =

∫
ds

1
=

∫
dx

x

s(x, y) = ln(x) + c , c ∈ R

Hence the canonical coordinates are given by (r(x, y), s(x, y) = (x2y, ln(x)).Then we can convert the ODE
into variable separable form using these canonical coordinates. By total derivative operator

ds

dr
=
sx + y′sy
rx + y′ry

=
1
x

2xy + (xy2 − 2y
x −

1
x3

)x2

=
1

((x2y)2 − 1)

=
1

(r2 − 1)

Therefore under the canonical coordinates the given ODE exists in a variable separable form.Therefore we
can obtain the solution by integration.∫

ds =

∫
dr

(r2 − 1)

s =
1

2
ln(

r − 1

r + 1
) + c , c ∈ R

Then we can get the general solution of the given ODE by changing the canonical coordinates to original
coordinates.

y =
c1 + x2

x2(c1 − x2)
, c1 ∈ R

Example 2.8. For this example a differential equation is taken from exercises of [5] to find general solution
using Lie symmetries and illustrate invariant curves.
Consider the first order non linear ordinary differential equation

dy

dx
=
x3

y
− xy

.It admits a one parameter Lie group of transformations whose tangent vector field is (ξ(x, y), η(x, y)) =
( 1x ,

1
y ).we cam obtain these infinitesimals by solving the linerized symmetry condition 7. Then the infinites-

imal generator is given by

X =
1

x

∂

∂x
+

1

y

∂

∂y

Let (r, s) be canonical coordinates of the One parameter Lie group of transformations. Then the equations
12 and 13 become

1

x

∂r

∂x
+

1

y

∂r

∂y
= 0
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1

x

∂s

∂x
+

1

y

∂s

∂y
= 1

Then we can find independent coordinate r by solving the characteristic equation dx
x−1 = dy

y−1 .∫
xdx =

∫
ydy

x2 + c = y2 , c ∈ R
c = −x2 + y2

Then r(x, y) = c = −x2 + y2

we can find the dependent coordinate s by solving the characteristic equation dx
x−1 = dy

y−1 = ds.

xdx = ydy = ds

s =

∫
ds =

∫
xdx

s =
x2

2
+ c c ∈ R

Hence the canonical coordinates are given by (r(x, y), s(x, y)) = (−x2 + y2, x
2

2 ). Then we can convert the
ODE into variable separable form using these canonical coordinates. By total derivative operator

ds

dr
=
sx + y′sy
rx + y′ry

=
x

−2x+ (x
3

y − xy)2y

=
−1

2(−x2 + y2 + 1)

=
−1

2(r + 1)

Therefore under the canonical coordinates the given ODE exists in a variable separable form.Therefore we
can obtain the solution by integration.∫

ds =

∫
−1

2(r + 1)dr

s =
−1

2
ln(r + 1) + c1 , c1 ∈ R

Then we can get the general solution of the given ODE by changing the canonical coordinates into original
coordinates.

y = ±
√
−1 + x2 +

c2

ex2
, c2 ∈ R

3 Conclusions

In this paper, fundamental theorems and definitions regarding Lie symmetry methods have been presented.
The main purpose of this paper is to present how to obtain exact solutions to first order NODEs, using Lie
groups of symmetries since most of standard solution techniques are insufficient to get exact solutions to
NODEs.

First we discussed about symmetry groups of ODEs using One parameter Lie group of transformations.
In examples 2.7 and 2.8, we obtained general solutions to a couple of first-order NODEs by converting them
into variable separable form using Lie groups of symmetries. In the all theorems and definitions that we
presented above the standard types of ODEs were not taken into consideration. Hence we can apply this



42 Disanayakage Hashan Sanjaya Perera , Dilruk Gallage

method to find exact solutions unfamiliar types of ODEs but for some ODEs solving the Linearized symmetry
condition by hand can be very hard and complex. But there are many software including Mathematica and
Maple which have packages that can be used to do calculations of Lie symmetry analysis. In such cases we
can use these software packages to solve the Linearized symmetry condition.
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