

14th Iranian International Group Theory Conference

Solvable Graph of finite Group

Ameer Kadhim Abdulaali¹ University of Kufa, Najaf, Iraq

Hayder Baqer Ameen University of Kufa, Najaf, Iraq

Abstract

Let G be a finite non-solvable group with solvable radical Sol(G). The solvable graph $\Gamma_{sol}(G)$ of group G is a graph with vertex set $V(\Gamma_{sol}) = \{\sigma \mid \sigma \in G\}$ and two distinct vertices σ_1 and σ_2 are adjacent if and only if $\langle \sigma_1, \sigma_2 \rangle$ is solvable group, so the solvability degree of G is define by the number of all elements such that $\{(\sigma_1, \sigma_2) \in G \times G \mid \langle \sigma_1, \sigma_2 \rangle \leq_{Sol} G\}$ on the number $(G)^2$. We show that the relation between $\Gamma_{sol}(G)$ and the solvability degree of G.

Keywords: Solvable group, Solvable graph, Solvability degree Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Let $\Gamma(V, E)$ be a simple graph. The set of vertices denoted by $V(\Gamma)$ and the set of edges denoted by $E(\Gamma)$.

The solvable Graph of a finite group G denoted by $\Gamma_{sol}(G)$ was introduced by Ma et. all in [2] in the year 2014. The graph $\Gamma_{sol}(G)$ has vertex set as elements of the non-solvable group G and any two vertices σ_i and σ_j are adjacent in $\Gamma_{sol}(G)$ if and only if $\langle \sigma_i, \sigma_j \rangle \leq_{Sol}$ is solvable subgroup of G. In this paper we take the generalizer of non-solvable group of type $C_p \times A_5$ it is will-known the A_5 is smallest non-solvable group, thus $C_p \times A_5$ is non-solvable group. It is clear that if group G is a solvable, then $\Gamma_{sol}(G) \cong K_{|G|}$ since for any two elements a, b of G the subgroup $\langle a, b \rangle$ is solvable in G.

In this paper, we consider a simple graph which is undirected, with no loops or multiple edges. Let Γ be a graph. We will denote by $V(\Gamma)$ and $E(\Gamma)$, the set of vertices and edges of Γ , respectively. The degree of a vertex $v \in V(\Gamma)$ is denoted by deg(v), and it well-known that deg(v) = |N(v)|. The degree sequence of a graph with vertices v_1, \dots, v_n is $d = (deg(v_1), \dots, deg(v_n))$. Every graph with the degree sequence d is a realization of d. A degree sequence is unigraphic if all its realizations are isomorphic. We can present it by $\Delta(\Gamma) = \begin{pmatrix} n_1 & n_2 & \cdots & n_s \\ \mu(n_1) & \mu(n_2) & \cdots & \mu(n_s) \end{pmatrix}$, where n_i are degree vertices and $\mu(n_i)$ are multiplicities. The split graph is a graph in which the vertices can be partitioned into a clique and an independent set.

Suppose that g an element of group G, the solvabilizer of g define by $\{y \in G \mid \langle g, y \rangle\} \leq_{sol}$ in Gand denoted by $Sol_G(g)$ and the centralizer of g is given by $Cent_G(g) = \{y \in G \mid gy = yg\}$ where $Cent_G(g) \subset Sol_G(g)$ and $|Sol_G(g)|$ divided $Cent_G(g)$ for each $g \in G$ for more see [1, 2]. It is clear that is not necessarily a subgroup of G. It is easy to see that $Sol(G) = \{(u, v) \in G \times G, \langle u, v \rangle \leq_{sol} G\} = \bigcup_{\forall u \in G} Sol_G(u)$. Also, Sol(G) is the solvable radical of G (see [3]).

 $^{^{1}}$ speaker

Let G be a finite group and non-solvable, the probability that a randomly chosen pair of elements of G generate a solvable group is define by:

$$P_{sol}(G) = \frac{|\{(g, y) \in G \times G \mid \langle g, y \rangle \leq_{sol} G\}|}{|G|^2}$$

 $P_{sol}(G)$ is the probability that a randomly chosen pair of elements of G generate a solvable group (see [4, 5]).

we can present conjugate definition by from using the conjugacy class $Cl_G(g)$,

$$\begin{aligned} |Sol(G)| &= |\{(u,v) \in G \times G \mid \langle u,v \rangle \leq_{sol} G\}| \\ &= \bigcup_{\forall u \in G} |\{v \in G \mid \langle u,v \rangle \leq_{sol} G\}| \\ &= \sum |cl_G(u)||sol_G(u)| \end{aligned}$$

We introduce in this paper some of important relation between solvable graph $\Gamma_{sol}(G)$ of G and probability that a randomly chosen pair of elements of G generate a solvable group $P_{sol}(G)$.

2 Main results

Proposition 2.1. : Let $G \cong A_5$, the solvability degree of elements is given by:

 $\begin{aligned} 1. \ Sol_{A_{5}}(e) &= \{g \mid \forall g \in A_{5}\}; \\ 2. \ Sol_{A_{5}}((ab)(cd)) &= \begin{cases} g & \#(g) \\ Identity & 1 \\ (bc)(de), (bd)(ce), (be)(cd), (ab)(ce), \\ (ab)(cd), (ab)(ce), (ac)(bd), \\ (ac)(be), (ad)(ce), (ac)(bd), \\ (ac)(be), (ad)(bc), (ad)(be), \\ (ae)(cd), (ae)(bd) & 15 \\ (abc)^{\pm}, (abd)^{\pm}, (abe)^{\pm}, (cda)^{\pm}, (cde)^{\pm} & 12 \\ (abccd)^{\pm}, (abd)^{\pm}, (abde)^{\pm}, (acdbe)^{\pm}, (aebcd)^{\pm} & 8 \end{cases} \\ 3. \ Sol_{A_{5}}((abc)) &= \begin{cases} g & \#(g) \\ Identity & 1 \\ (ab)(ij)_{i < j, i \neq j \neq a, b}, (ac)(ij)_{i < j, i \neq j \neq a, b}(bc)(ij)_{i < j, i \neq j \neq a, b} & 9 \\ (abi)_{i=c,d,e}^{\pm}, (acj)_{j=b,e}^{\pm}, (bcj)_{j=d,e}^{\pm} & 14 \end{cases} \\ 4. \ Sol_{A_{5}}((abcde)) &= \begin{cases} g & \#(g) \\ Identity & 1 \\ (be)(cd), (ab)(ce), (ac)(de), (ad)(bc), (ae)(bd) & 5 \\ (abcde), (acebd), (adbec), (aedcb) & 4 \end{cases} \\ 5. \ Sol_{A_{5}}((abced)) &= \begin{cases} g & \#(g) \\ Identity & 1 \\ (bd)(ce), (ab)(cd), (ac)(de), (ad)(bc), (ae)(bc) & 5 \\ (abcde), (acebd), (acbcd), (adbc), (aebdc) & 4 \end{cases} \end{aligned}$

Corollary 2.2. 1. If g = e, then $|Sol_{A_5}(e)| = 60$

2. If
$$g = (ab)(cd)$$
, then $|Sol_{A_5}((ab)(cd))| = 36$

3. If g = (abc), then $|Sol_{A_5}((abc))| = 24$ 4. If g = (abcde), then $|Sol_{A_5}((abcde))| = 10$ 5. If g = (abced), then $|Sol_{A_5}((abced))| = 10$

Proposition 2.3. :

 $Con_{A_5}(e) = \{g \mid \forall g \in A_5\}$

$$Con_{A_{5}}((ab)(cd)) = \begin{cases} g & \#(g) \\ (bc)(de), (bd)(ce), (be)(cd), (ab)(ce), \\ (ab)(cd), (ab)(ce), (ac)(de), (ac)(bd), \\ (ac)(be), (ad)(ce), (ad)(bc), (ad)(be), \\ (ae)(cd), (ae)(bc), (ae)(bd) & 15 \end{cases}$$

$$Con_{A_{5}}((abc)) = \begin{cases} g & \#(g) \\ (cde), (ced), (bcd), (bce), (bdc), (bde), (bec), (bed), \\ (abc), (abd), (abe), (acb), (acd), (ace), (adb), (adc), \\ (ade), (aeb), (aec), (aed) & 20 \end{cases}$$

$$Con_{A_{5}}((abcde)) = \begin{cases} g & \#(g) \\ (abcde), (abdec), (abdec), (abecd), (acedb), (acbde), (acdbe), \\ (adceb), (adebc), (adbce), (aedb), (acbde), (aecbd), \\ (adceb), (abdce), (abdcc), (acdeb), (acbde), (acebd), \\ (adceb), (adbcc), (abdcc), (acdbb), (acbde), (acbde), \\ (adcb), (adbcc), (adbcc), (acdbb), (acbde), (aebdc), \\ (adcb), (adbcc), (adbcc), (acdbb), (acbde), (aebdc), \\ (adcb), (adbcc), (adbcb), (acdbb), (acdbc), (aebdc), \\ (adcb), (adbcc), (adbcb), (acdbb), (acbdc), (aebdc), \\ (adcb), (adbcc), (adbcb), (acdbb), (acdbc), (aebdc), \\ (adcb), (adbcc), (adbcb), (acdbb), (acdbb), (aebdc), \\ (adcb), (adbcc), (adbcb), (acdbb), (acdbb), \\ (adcb), (adbcc), (adcbb), (acdbb), (acbdc), \\ (adcbb), (adbcb), (adcbb), (acdbb), (acbdc), \\ (abcdb), (adbcc), (adbcb), (acdbb), (acdbb), \\ (adcbb), (adbcb), (adcbb), (acdbb), (acdbbc), \\ (adcbb), (adbcb), (adcbb), (acdbb), (acdbbc), \\ (abcdb), (adbcb), (adcbb), (acdbb), (acdbb), \\ (adcbb), (adbcb), (adcbb), (acdbb), (acdbb), \\ (adcbb), (adbcb), (adcbb), (acdbb), \\ (adcbb), (adbbc), (adbcb), (acdbb), (acdbb), \\ (adcbb), (adbbc), (adcbb), \\ (adcbb), (adbbc), (adcbb), \\ (adcbb), (adbbc), \\ (adcbb), (adbbc), \\ (adcbb), (adbbc), \\ (adcbb), \\ (adcbb),$$

Corollary 2.4. The following held:

- 1. If g = e, then $|Con_{A_5}(e)| = 1$
- 2. If g = (ab)(cd), then $|Con_{A_5}((ab)(cd))| = 15$
- 3. If g = (abc), then $|Con_{A_5}((abc))| = 20$
- 4. If g = (abcde), then $|Con_{A_5}((abcde))| = 12$
- 5. If g = (abced), then $|Con_{A_5}((abced))| = 12$

Corollary 2.5. : The results of A_5 :

typesofelement	order	ConjugacyClass(y)	Size	Sol(y)
C_1	1	()	1	60
C_2	2	(ab)(cd)	15	36
C3	3	(abc)	20	24
C_5	5	(abcde)	12	10
D ₁₀	10	(abced)	12	10

2.1 Parameters of Alternating Group

In this section we will present the generalization formula to compute the number of solvability degree of Alternating group $C_p \times A_5$ where p is an prime number.

We can compute this To compute the parameter of solavable groups of A_5 used ConjugacyClass elements of $A_5 = \{e, (ab)(cd), (abcd), (abcde), (abcde), (abcde)\}$ and solvable groups in the rule:

$$P_{sol}(A_5) = \frac{\sum |Con(y)| deg_{sol}(y)}{|G|^2}$$

$$P_{sol}(A_5) = \frac{1(60) + 15(36) + 20(24) + 12(10) + 12(10)}{|60|^2} = \frac{11}{30}$$

see 2.5

A_5	e	(ab)(cd)	(abc)	(abcde)	(abced)
e	1	1	1	1	1
(ab)(cd)	1	1	a_{ij}	b_{ij}	c_{ij}
(abc)	1	d_{ij}	e_{ij}	0	0
(abcde)	1	f_{ij}	0	g_{ij}	h_{ij}
(abced)	1	k_{ij}	0	n_{ij}	m_{ij}

where

$$\begin{array}{ll} 1. \ a_{ij} = \left\{ \begin{array}{ll} 1 & if \ i = (ab)(cd), j = (abc) \ see \ Proposition 2.1 \\ 0 & Otherwise \end{array} \right., \\ \\ 2. \ b_{ij} = \left\{ \begin{array}{ll} 1 & if \ i = (ab)(cd), j = (abcde) \ see \ Proposition 2.1 \\ 0 & Otherwise \end{array} \right., \\ \\ 3. \ c_{ij} = \left\{ \begin{array}{ll} 1 & if \ i = (ab)(cd), j = (abcd) \ see \ Proposition 2.1 \\ 0 & Otherwise \end{array} \right., \\ \\ 4. \ d_{ij} = \left\{ \begin{array}{ll} 1 & if \ i = (abc), j = (ab)(cd) \ see \ Proposition 2.1 \\ 0 & Otherwise \end{array} \right., \\ \\ 5. \ e_{ij} = \left\{ \begin{array}{ll} 1 & if \ i = (abc), j = (abc) \ see \ Proposition 2.1 \\ 0 & Otherwise \end{array} \right., \\ \\ 5. \ e_{ij} = \left\{ \begin{array}{ll} 1 & if \ i = (abc), j = (abc) \ see \ Proposition 2.1 \\ 0 & Otherwise \end{array} \right., \\ \\ 6. \ f_{ij} = \left\{ \begin{array}{ll} 1 & if \ i = (abcde), j = (abc) \ see \ Proposition 2.1 \\ 0 & Otherwise \end{array} \right., \\ \\ 6. \ f_{ij} = \left\{ \begin{array}{ll} 1 & if \ i = (abcde), j = (ab)(cd) \ see \ Proposition 2.1 \\ 0 & Otherwise \end{array} \right., \\ \\ 8. \ h_{ij} = \left\{ \begin{array}{ll} 1 & if \ i = (abcde), j = (abcde) \ see \ Proposition 2.1 \\ 0 & Otherwise \end{array} \right., \\ \\ 8. \ h_{ij} = \left\{ \begin{array}{ll} 1 & if \ i = (abcde), j = (abcde) \ see \ Proposition 2.1 \\ 0 & Otherwise \end{array} \right., \\ \\ 9. \ k_{ij} = \left\{ \begin{array}{ll} 1 & if \ i = (abcde), j = (abcd) \ see \ Proposition 2.1 \\ 0 & Otherwise \end{array} \right., \\ \\ 9. \ k_{ij} = \left\{ \begin{array}{ll} 1 & if \ i = (abcde), j = (abcd) \ see \ Proposition 2.1 \\ 0 & Otherwise \end{array} \right., \\ \\ 10. \ n_{ij} = \left\{ \begin{array}{ll} 1 & if \ i = (abcd), j = (abcd) \ see \ Proposition 2.1 \\ 0 & Otherwise \end{array} \right., \\ \\ 11. \ m_{ij} = \left\{ \begin{array}{ll} 1 & if \ i = (abcd), j = (abcd) \ see \ Proposition 2.1 \\ 0 & Otherwise \end{array} \right., \\ \end{array} \right.$$

2.2 The relation between $P_{sol}(G)$ and $\Gamma_{sol}(G)$.

We begin with the following Proposition.

Proposition 2.6. Let $\Gamma_{sol}(G)$ be a simple and solvable graph, The number of degree vertices def(v) for any $v \in V(\Gamma_{sol})$ is equal to $Sol_G(v) - 1$

Proof. It is clear that the $Sol_G(v) = \{u \in G \mid \langle v, u \rangle \leq_{sol} G\}$ and deg(v) represents the number of vertices from G which are adjacent to v. Since $v \in Sol_G(v)$, therefore $|Sol_G(v)| - 1$ represents the number of vertices which are adjacent to v. Thus $deg(v) = |Sol_G(u)| - 1$.

Proposition 2.7. The matrix degree sequences of solvable graph is given by:

$$\Delta(\Gamma_{sol}(A_5)) = \begin{pmatrix} 1 & 15 & 20 & 24\\ 59 & 35 & 23 & 9 \end{pmatrix}$$

Proposition 2.8. The number of edges of solvable graph is given by:

$$E(\Gamma_{sol}(A_5)) = 630$$

Lemma 2.9. Let Γ_G be a solvable graph. The following are held:

- 1. $deg(v) = |Sol_G(v)| 1;$
- 2. $\mu(deg(v)) = |cl_G(v)|.$

Theorem 2.10.

$$P_{sol}(G) = \frac{2|E(\Gamma_{sol}(G))|}{|G|^2}$$

Proof. In the first, the parameters solvablity degree is define by $P_{sol}(G) = \frac{\{(u, v) \in G \times G, \langle u, v \rangle \leq_{sol} G\}}{|G|^2}$, Let |G| = n, suppose that u_i and u_j are elements in G and $cl_G(u_i)$ where $1 \leq i \leq r$, we can used this definition by

$$\begin{split} P_{sol}(G) &= \frac{|\{(u_i, u_j) \in G \times G, \langle u_i, u_j \rangle \leq_{sol} G\}|}{|G|^2} \\ &= \frac{|Sol_G(u_1) \cup Sol_G(u_2) \cup \dots \cup Sol_G(u_n)|}{|G|^2} \\ &= \frac{|Sol_G(u_1)| + |Sol_G(u_2)| + \dots + |Sol_G(u_n)|}{|G|^2} \\ &= \frac{|cl_g(u_1)||Sol_G(u_1)| + |cl_g(u_2)||Sol_G(u_2)| + \dots + |cl_g(u_r)||Sol_G(u_r)|}{|G|^2} \\ &= \frac{\sum_{1 \leq i \leq r} |cl_g(u_i)||Sol_G(u_i)|}{|G|^2} \\ &= \frac{2|E(\Gamma_{sol}(G))|}{|G|^2}. \end{split}$$

Acknowledgment

I would like to acknowledge my colleagues from my internship at the faculty of Computer Sciences and Mathematics. for their wonderful collaboration.

References

- [1] Ameer Abdulaali and, Haider Shelash Solvablitiy Degree of Finite Groups, DOI: 10.13140/RG.2.2.22800.74247, Submit AIP Conference Proceedings, 2021
- [2] D. Hai-Reuven, Non-solvable graph of a finite group and solvabilizers, arXiv:1307.2924v1, 2013.

- [3] R. Guralnick, B. Kunyavskii, E. Plotkin and A. Shalev, Thompson-like characterizations of the solvable radical, J.Algebra, 300 (1) (2006), pp.363–375.
- [4] R.M. Guralnick and G.R. Robinson, On the commuting probability in finite groups, J. Algebra, 300 (2),(2006), pp:509–528.
- [5] R. M. Guralnick and J. Wilson, The probability of generating a finite soluble group, Proc. London Math. Soc. 81 (3),(2000), pp:405-427.

Email: ameerk.albohassoon@student.uokufa.edu.iq Email: hayder.ameen@uokufa.edu.iq