Solvable Graph of finite Group

Ameer Kadhim Abdulaali ${ }^{1}$
University of Kufa, Najaf, Iraq
Hayder Baqer Ameen
University of Kufa, Najaf, Iraq

Abstract

Let G be a finite non-solvable group with solvable radical $\operatorname{Sol}(G)$. The solvable graph $\Gamma_{\text {sol }}(G)$ of group G is a graph with vertex set $V\left(\Gamma_{\text {sol }}\right)=\{\sigma \mid \sigma \in G\}$ and two distinct vertices σ_{1} and σ_{2} are adjacent if and only if $\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ is solvable group, so the solvability degree of G is define by the number of all elements such that $\left\{\left(\sigma_{1}, \sigma_{2}\right) \in G \times G \mid\left\langle\sigma_{1}, \sigma_{2}\right\rangle \leq_{\text {Sol }} G\right\}$ on the number $(G)^{2}$. We show that the relation between $\Gamma_{\text {sol }}(G)$ and the solvability degree of G.

Keywords: Solvable group, Solvable graph, Solvability degree
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Let $\Gamma(V, E)$ be a simple graph. The set of vertices denoted by $V(\Gamma)$ and the set of edges denoted by $E(\Gamma)$.
The solvable Graph of a finite group G denoted by $\Gamma_{\text {sol }}(G)$ was introduced by Ma et. all in [2] in the year 2014. The graph $\Gamma_{\text {sol }}(G)$ has vertex set as elements of the non-solvable group G and any two vertices σ_{i} and σ_{j} are adjacent in $\Gamma_{\text {sol }}(G)$ if and only if $\left\langle\sigma_{i}, \sigma_{j}\right\rangle \leq_{\text {Sol }}$ is solvable subgroup of G. In this paper we take the generalizer of non-solvable group of type $C_{p} \times A_{5}$ it is will-known the A_{5} is smallest non-solvable group, thus $C_{p} \times A_{5}$ is non-solvable group. It is clear that if group G is a solvable, then $\Gamma_{\text {sol }}(G) \cong K_{|G|}$ since for any two elements a, b of G the subgroup $\langle a, b\rangle$ is solvable in G.

In this paper, we consider a simple graph which is undirected, with no loops or multiple edges. Let Γ be a graph. We will denote by $V(\Gamma)$ and $E(\Gamma)$, the set of vertices and edges of Γ, respectively. The degree of a vertex $v \in V(\Gamma)$ is denoted by $\operatorname{deg}(v)$, and it well-known that $\operatorname{deg}(v)=|N(v)|$. The degree sequence of a graph with vertices v_{1}, \cdots, v_{n} is $d=\left(\operatorname{deg}\left(v_{1}\right), \cdots, \operatorname{deg}\left(v_{n}\right)\right)$. Every graph with the degree sequence d is a realization of d. A degree sequence is unigraphic if all its realizations are isomorphic. We can present it by $\Delta(\Gamma)=\left(\begin{array}{cccc}n_{1} & n_{2} & \cdots & n_{s} \\ \mu\left(n_{1}\right) & \mu\left(n_{2}\right) & \cdots & \mu\left(n_{s}\right)\end{array}\right)$, where n_{i} are degree vertices and $\mu\left(n_{i}\right)$ are multiplicities. The split graph is a graph in which the vertices can be partitioned into a clique and an independent set.

Suppose that g an element of group G, the solvabilizer of g define by $\{y \in G \mid\langle g, y\rangle\} \leq_{\text {sol }}$ in G and denoted by $\operatorname{Sol}_{G}(g)$ and the centralizer of g is given by $\operatorname{Cent}_{G}(g)=\{y \in G \mid g y=y g\}$ where $\operatorname{Cent}_{G}(g) \subset \operatorname{Sol}_{G}(g)$ and $\left|\operatorname{Sol}_{G}(g)\right|$ divided $\operatorname{Cent}_{G}(g)$ for each $g \in G$ for more see [1, 2]. It is clear that is not necessarily a subgroup of G. It is easy to see that $\operatorname{Sol}(G)=\left\{(u, v) \in G \times G,\langle u, v\rangle \leq_{\text {sol }} G\right\}=\bigcup_{\forall u \in G} \operatorname{Sol}_{G}(u)$. Also, $\operatorname{Sol}(G)$ is the solvable radical of G (see [3]).

[^0]Let G be a finite group and non-solvable, the probability that a randomly chosen pair of elements of G generate a solvable group is define by:

$$
P_{s o l}(G)=\frac{\left|\left\{(g, y) \in G \times G \mid\langle g, y\rangle \leq_{\text {sol }} G\right\}\right|}{|G|^{2}}
$$

$P_{\text {sol }}(G)$ is the probability that a randomly chosen pair of elements of G generate a solvable group (see $[4,5])$.
we can present conjugate definition by from using the conjugacy class $C l_{G}(g)$,

$$
\begin{aligned}
|\operatorname{Sol}(G)| & =\left|\left\{(u, v) \in G \times G \mid\langle u, v\rangle \leq_{\text {sol }} G\right\}\right| \\
& =\bigcup_{\forall u \in G}\left|\left\{v \in G \mid\langle u, v\rangle \leq_{\text {sol }} G\right\}\right| \\
& =\sum\left|c l_{G}(u)\right|\left|\operatorname{sol}_{G}(u)\right|
\end{aligned}
$$

We introduce in this paper some of important relation between solvable graph $\Gamma_{\text {sol }}(G)$ of G and probability that a randomly chosen pair of elements of G generate a solvable group $P_{\text {sol }}(G)$.

2 Main results

Proposition 2.1. : Let $G \cong A_{5}$, the solvability degree of elements is given by:

1. $S o l_{A_{5}}(e)=\left\{g \mid \forall g \in A_{5}\right\}$;
2. $\operatorname{Sol}_{A_{5}}((a b)(c d))=\left\{\begin{array}{lc}g & \#(g) \\ \text { Identity } & 1 \\ (b c)(d e),(b d)(c e),(b e)(c d),(a b)(c e), & \\ (a b)(c d),(a b)(c e),(a c)(d e),(a c)(b d), & \\ (a c)(b e),(a d)(c e),(a d)(b c),(a d)(b e), & 15 \\ (a e)(c d),(a e)(b c),(a e)(b d) & 12 \\ (a b c)^{ \pm},(a b d)^{ \pm},(a b e)^{ \pm},(c d a)^{ \pm},(c d b)^{ \pm},(c d e)^{ \pm} \\ (a b c e d)^{ \pm},(a b d e c)^{ \pm},(a c d b e)^{ \pm},(a e b c d)^{ \pm} & 8\end{array}\right.$,
3. $\operatorname{Sol}_{A_{5}}((a b c))=\left\{\begin{array}{lc}g & \#(g) \\ \text { Identity }(a b)(i j)_{i<j, i \neq j \neq a, b},(a c)(i j)_{i<j, i \neq j \neq a, b}(b c)(i j)_{i<j, i \neq j \neq a, b} & 9 \\ (a b i)_{i=c, d, e}^{ \pm},(a c j)_{j=b, e}^{ \pm},(b c j)_{j=d, e}^{ \pm} & 14\end{array}\right.$
4. $\operatorname{Sol}_{A_{5}}((a b c d e))=\left\{\begin{array}{lc}g & \#(g) \\ \text { Identity } & 1 \\ (b e)(c d),(a b)(c e),(a c)(d e),(a d)(b c),(a e)(b d) & 5 \\ (a b c d e),(a c e b d),(a d b e c),(a e d c b) & 4\end{array}\right.$,
5. Sol $_{A_{5}}((a b c e d))=\left\{\begin{array}{lc}g & \#(g) \\ \text { Identity } & 1 \\ (b d)(c e),(a b)(c d),(a c)(d e),(a d)(b c),(a e)(b c) & 5 \\ (a b c e d),(a c d b e),(a d e c b),(a e b d c) & 4\end{array}\right.$

Corollary 2.2. 1. If $g=e$, then $\left|\operatorname{Sol}_{A_{5}}(e)\right|=60$
2. If $g=(a b)(c d)$, then $\left|\operatorname{Sol}_{A_{5}}((a b)(c d))\right|=36$
3. If $g=(a b c)$, then $\left|\operatorname{Sol}_{A_{5}}((a b c))\right|=24$
4. If $g=(a b c d e)$, then $\left|\operatorname{Sol}_{A_{5}}((a b c d e))\right|=10$
5. If $g=(a b c e d)$, then $\mid \operatorname{Sol}_{A_{5}}(($ abced $)) \mid=10$

Proposition 2.3.

$\operatorname{Con}_{A_{5}}(e)=\left\{g \mid \forall g \in A_{5}\right\}$

$$
\begin{aligned}
& \operatorname{Con}_{A_{5}}((a b)(c d))=\left\{\begin{array}{ll}
g & \#(g) \\
(b c)(d e),(b d)(c e),(b e)(c d),(a b)(c e), & \\
(a b)(c d),(a b)(c e),(a c)(d e),(a c)(b d), & \\
(a c)(b e),(a d)(c e),(a d)(b c),(a d)(b e), & \\
(a e)(c d),(a e)(b c),(a e)(b d) & 15
\end{array},\right. \\
& \operatorname{Con}_{A_{5}}((a b c))=\left\{\begin{array}{ll}
g & \#(g) \\
(c d e),(c e d),(b c d),(b c e),(b d c),(b d e),(b e c),(b e d), & \\
(a b c),(a b d),(a b e),(a c b),(a c d),(a c e),(a d b),(a d c), & \\
(a d e),(a e b),(a e c),(a e d)
\end{array},\right. \\
& C o n_{A_{5}}((a b c d e))= \begin{cases}g & \#(g) \\
(a b c d e),(a b d e c),(a b e c d),(a c e d b),(a c b e d),(a c d b e), & \\
(a d c e b),(a d e b c),(a d b c e),(a e d c b),(a e b d c),(a e c b d) & 12\end{cases} \\
& C^{\prime} n_{A_{5}}((a b c e d))= \begin{cases}g & \#(g) \\
(a b c e d),(a b d c e),(a b e d c),(a c d e b),(a c b d e),(a c e b d), & \\
(a d e c b),(a d b e c),(a d c b e),(a e c d b),(a e d b c),(a e b c d) & 12\end{cases}
\end{aligned}
$$

Corollary 2.4. The following held:

1. If $g=e$, then $\left|\operatorname{Con}_{A_{5}}(e)\right|=1$
2. If $g=(a b)(c d)$, then $\left|\operatorname{Con}_{A_{5}}((a b)(c d))\right|=15$
3. If $g=(a b c)$, then $\left|\operatorname{Con}_{A_{5}}((a b c))\right|=20$
4. If $g=(a b c d e)$, then $\left|\operatorname{Con}_{A_{5}}((a b c d e))\right|=12$
5. If $g=($ abced $)$, then \mid Con $_{A_{5}}(($ abced $)) \mid=12$

Corollary 2.5. :The results of A_{5} :

typesofelement	order	ConjugacyClass(y)	Size	Sol (y)
C_{1}	1	()	1	60
C_{2}	2	$(a b)(c d)$	15	36
C_{3}	3	$(a b c)$	20	24
C_{5}	5	$(a b c d e)$	12	10
D_{10}	10	$(a b c e d)$	12	10

2.1 Parameters of Alternating Group

In this section we will present the generalization formula to compute the number of solvability degree of Alternating group $C_{p} \times A_{5}$ where p is an prime number.

We can compute this To compute the parameter of solavable groups of A_{5} used ConjugacyClass elements of $A_{5}=\{e,(a b)(c d),(a b c),(a b c d e),(a b c e d)\}$ and solvable groups in the rule:

$$
P_{\text {sol }}\left(A_{5}\right)=\frac{\sum|\operatorname{Con}(y)| d e g_{\text {sol }}(y)}{|G|^{2}}
$$

$$
P_{\text {sol }}\left(A_{5}\right)=\frac{1(60)+15(36)+20(24)+12(10)+12(10)}{|60|^{2}}=\frac{11}{30}
$$

see 2.5

A_{5}	e	$(\mathrm{ab})(\mathrm{cd})$	(abc)	(abcde)	(abced)
e	1	1	1	1	1
$(a b)(c d)$	1	1	$a_{i j}$	$b_{i j}$	$c_{i j}$
$(a b c)$	1	$d_{i j}$	$e_{i j}$	0	0
$(a b c d e)$	1	$f_{i j}$	0	$g_{i j}$	$h_{i j}$
$(a b c e d)$	1	$k_{i j}$	0	$n_{i j}$	$m_{i j}$

where

1. $a_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=(a b)(c d), j=(a b c) \text { see Proposition } 2.1 \\ 0 & \text { Otherwise }\end{array}\right.$,
2. $b_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=(a b)(c d), j=(a b c d e) \text { seeProposition } 2.1 \\ 0 & \text { Otherwise }\end{array}\right.$,
3. $c_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=(a b)(c d), j=(\text { abced }) \text { seeProposition } 2.1 \\ 0 & \text { Otherwise }\end{array}\right.$,
4. $d_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=(a b c), j=(a b)(c d) \text { see Proposition } 2.1 \\ 0 & \text { Otherwise }\end{array}\right.$,
5. $e_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=(a b c), j=(a b c) \text { see Proposition } 2.1 \\ 0 & \text { Otherwise }\end{array}\right.$,
6. $f_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=(\text { abcde }), j=(a b)(c d) \text { see Proposition } 2.1 \\ 0 & \text { Otherwise }\end{array}\right.$,
7. $g_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=(\text { abcde }), j=(\text { abcde }) \text { see Proposition2.1 } \\ 0 & \text { Otherwise }\end{array}\right.$,
8. $h_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=(\text { abcde }), j=(\text { abced }) \text { see Proposition2.1 } \\ 0 & \text { Otherwise }\end{array}\right.$,
9. $k_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=(\text { abced }), j=(a b)(c d) \text { see Proposition } 2.1 \\ 0 & \text { Otherwise }\end{array}\right.$,
10. $n_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=(\text { abced }), j=(\text { abced }) \text { see Proposition } 2.1 \\ 0 & \text { Otherwise }\end{array}\right.$,
11. $m_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=(\text { abced }), j=(\text { abced }) \text { see Proposition } 2.1 \\ 0 & \text { Otherwise }\end{array}\right.$.

2.2 The relation between $P_{\text {sol }}(G)$ and $\Gamma_{\text {sol }}(G)$.

We begin with the following Proposition.
Proposition 2.6. Let $\Gamma_{\text {sol }}(G)$ be a simple and solvable graph, The number of degree vertices def(v) for any $v \in V\left(\Gamma_{\text {sol }}\right)$ is equal to $\operatorname{Sol}_{G}(v)-1$

Proof. It is clear that the $\operatorname{Sol}_{G}(v)=\left\{u \in G \mid\langle v, u\rangle \leq_{\text {sol }} G\right\}$ and $\operatorname{deg}(v)$ represents the number of vertices from G which are adjacent to v. Since $v \in S o l_{G}(v)$, therefore $\left|S o l_{G}(v)\right|-1$ represents the number of vertices which are adjacent to v. Thus $\operatorname{deg}(v)=\left|\operatorname{Sol}_{G}(u)\right|-1$.

Proposition 2.7. The matrix degree sequences of solvable graph is given by:

$$
\Delta\left(\Gamma_{\text {sol }}\left(A_{5}\right)\right)=\left(\begin{array}{cccc}
1 & 15 & 20 & 24 \\
59 & 35 & 23 & 9
\end{array}\right)
$$

Proposition 2.8. The number of edges of solvable graph is given by:

$$
E\left(\Gamma_{\text {sol }}\left(A_{5}\right)\right)=630
$$

Lemma 2.9. Let Γ_{G} be a solvable graph. The following are held:

1. $\operatorname{deg}(v)=\left|\operatorname{Sol}_{G}(v)\right|-1$;
2. $\mu(\operatorname{deg}(v))=\left|c l_{G}(v)\right|$.

Theorem 2.10.

$$
P_{\text {sol }}(G)=\frac{2\left|E\left(\Gamma_{\text {sol }}(G)\right)\right|}{|G|^{2}}
$$

Proof. In the first, the parameters solvablitiy degree is define by $P_{\text {sol }}(G)=\frac{\left\{(u, v) \in G \times G,\langle u, v\rangle \leq_{\text {sol }} G\right\}}{|G|^{2}}$, Let $|G|=n$, suppose that u_{i} and u_{j} are elements in G and $c l_{G}\left(u_{i}\right)$ where $1 \leq i \leq r$, we can used this definition by

$$
\begin{aligned}
P_{\text {sol }}(G) & =\frac{\left|\left\{\left(u_{i}, u_{j}\right) \in G \times G,\left\langle u_{i}, u_{j}\right\rangle \leq_{\text {sol }} G\right\}\right|}{|G|^{2}} \\
& =\frac{\left|\operatorname{Sol}_{G}\left(u_{1}\right) \cup \operatorname{Sol}_{G}\left(u_{2}\right) \cup \cdots \cup \operatorname{Sol}_{G}\left(u_{n}\right)\right|}{|G|^{2}} \\
& =\frac{\left|\operatorname{Sol}_{G}\left(u_{1}\right)\right|+\left|\operatorname{Sol}_{G}\left(u_{2}\right)\right|+\cdots+\left|\operatorname{Sol}_{G}\left(u_{n}\right)\right|}{|G|^{2}} \\
& =\frac{\left|c l_{g}\left(u_{1}\right)\right|\left|\operatorname{Sol}_{G}\left(u_{1}\right)\right|+\left|c l_{g}\left(u_{2}\right)\right| \mid \text { Sol }_{G}\left(u_{2}\right)\left|+\cdots+\left|c l_{g}\left(u_{r}\right)\right|\right| \text { Sol }_{G}\left(u_{r}\right) \mid}{|G|^{2}} \\
& =\frac{\sum_{1 \leq i \leq r}\left|c l_{g}\left(u_{i}\right)\right|\left|\operatorname{Sol}_{G}\left(u_{i}\right)\right|}{|G|^{2}} \\
& =\frac{2\left|E\left(\Gamma_{\text {sol }}(G)\right)\right|}{|G|^{2}} .
\end{aligned}
$$

Acknowledgment

I would like to acknowledge my colleagues from my internship at the faculty of Computer Sciences and Mathematics. for their wonderful collaboration.

References

[1] Ameer Abdulaali and, Haider Shelash Solvablitiy Degree of Finite Groups, DOI: 10.13140/RG.2.2.22800.74247, Submit AIP Conference Proceedings, 2021
[2] D. Hai-Reuven, Non-solvable graph of a finite group and solvabilizers, arXiv:1307.2924v1, 2013.
[3] R. Guralnick, B. Kunyavskii, E. Plotkin and A. Shalev, Thompson-like characterizations of the solvable radical,J.Algebra,300 (1) (2006), pp.363-375.
[4] R.M. Guralnick and G.R. Robinson, On the commuting probability in finite groups, J. Algebra, 300 (2),(2006), pp:509-528.
[5] R. M. Guralnick and J. Wilson, The probability of generating a finite soluble group, Proc. London Math. Soc. 81 (3),(2000), pp:405-427.

Email: ameerk.albohassoon@student.uokufa.edu.iq
Email: hayder.ameen@uokufa.edu.iq

[^0]: ${ }^{1}$ speaker

