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Abstract

For every d-dimensional nilpotent n-Lie algebra A, t(A) is defined by t(A) =
(
d
n

)
− dimM(A), where

M(A) denotes the Schur multiplier of A. In this paper, we classify all nilpotent n-Lie alegbras A satisfying
t(A) = 11, 12. We also classify all nilpotent n- Lie algebras for t(A) = 17, 18, where n ≥ 3.
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1 Introduction

In 1985, Fillipov [10] introduced the concept of n-Lie algebras as an n-ary multilinear and skew-symmetric
operation [x1, x2, . . . , xn], which satisfies the following generalized Jacobi identity

[[x1, x2, . . . , xn], y2, . . . , yn] =

n∑
i=1

[x1, . . . , xi−1, [xi, y2, . . . , yn], xi+1, . . . , xn]

This algebra becomes a ordinary Lie algebra when n = 2.
The Schur multiplier of n-Lie algebra A, denoted byM(A), is defined asM (A) = R ∩ F 2/[R,F, . . . , F ],

where A ∼= F/R and F is a free n-Lie algebra. (see [5, 8] for more information on the Schur multiplier of
n-Lie algebras).

Assume thatA1, . . . , An are subalgebras ofA. Then the subspace ofA generated by all vectors [x1, . . . , xn]
where xi ∈ Ai is denoted by [A1, . . . , An]. The subalgebra A2 = [A, . . . , A] is called the derived subalgebra
of A. We say d-dimensional n-Lie algebra A is abelian and denoted by F (d) if A2 = 0. The center of A is
defined as

Z(A) = {x ∈ A : [x,A, . . . , A] = 0}.

An n-Lie algebraA is called nilpotent if As = 0 for some non-negatve integer s, where Ai+1 defines inductively
as A1 = 1 and Ai+1 = [Ai, A, . . . , A] for i ≥ 1 (see [14, 16] for more details).

Eshrati et al. [8] showed for every d-dimensional n-Lie algebra A, there exists a non-negative integer
t(A) such that

dimM(A) + t(A) =

(
d

n

)
.
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All finite dimensional nilpotent Lie algebras A with 0 ≤ t(A) ≤ 10 have been classified by several papers
[1, 3, 12, 13]. Also all finite dimensional nilpotent n-Lie algebras A with 0 ≤ t(A) ≤ 16 have been classified
in [3, 6].

In this paper, we classify nilpotent Lie algebras A satisfying t(A) = 11, 12. We also classify nilpotent
n-Lie algebras A satisfying t(A) = 17, 18 where n ≥ 3. All n-Lie algebras are finite dimensional, and every
non-mentioned bracket is assumed to be zero. Special Heisenberg n-Lie algebras play important roles in
classification of n-Lie algebras. These n-Lie algebras are introduced in [8]. An n-Lie algebra A is called
special Heisenberg if A2 = Z(A) and dimA2 = 1. Every special Heisenberg n-Lie algebra has dimension
mn+ 1, where m is a natural number. An special Heisenberg n-Lie algebra of dimension mn+ 1 is given by

H(n,m) = 〈x, x1, . . . , xmn : [xn(i−1)+1, xn(i−1)+2, . . . , xni] = x, i = 1, . . . ,m〉.

The dimension of Schur multiplier of F (d) and special Heisenberg n-Lie algebra are computed in Theorem
3.4 of [5] and Theorem 2.3 of [8] as follows.

Theorem 1.1. We have dimM(F (d)) =
(
d
n

)
, dimM(H(n, 1)) = n and

dimM(H(n,m)) =

(
mn

n

)
− 1 (m ≥ 2).

Theorem 1.2 ([5]). Let A and B be two finite dimensional n-Lie algebras. Then

dimM(A⊕B) = dimM(A) + dimM(B) +

(
a+ b

n

)
−
(
a

n

)
−
(
b

n

)
,

where a = dimA/A2 and b = dimB/B2.

Theorem 1.3 ([8]). Let A be a finite dimensional n-Lie algebra and K be a central ideal of A. Then

dimM(A) + dim(A2 ∩K) ≤ dimM
(
A

K

)
+ dimM(K) + a

(
b

n− 1

)
,

where a = dimK and b = dim(A/K)/(A/K)2.

Theorem 1.4 ([8]). Let A be a d-dimensional nilpotent n-Lie algebra and dimA2 = m ≥ 1. Then

dimM(A) ≤
(
d−m+ 1

n

)
+ (m− 2)

(
d−m
n− 1

)
+ n−m.

2 Main results

For every d-dimensional nilpotent n-Lie algebra A, there exists two non-negative integers t(A) and s(A)
such that t(A) =

(
d
n

)
− dimM(A) and s(A) =

(
d−1
n

)
+ n− 1− dimM(A). Thus

t(A) =

(
d− 1

n− 1

)
− n+ 1 + s(A). (1)

The classification of low dimensional Lie algebras is one of the fundamental issues in Lie algebras theory.
The classification of Lie algebras can be found in many books and papers. The classification of the six-
dimensional nilpotent Lie algebras on the arbitrary field was shown by Cicalo et al. [2]. Non-abelian
nilpotent Lie algebras up to dimension five over an arbitrary field are L3,2, L4,2, L4,3 and L5,i with 2 ≤ i ≤ 9.

Lemma 2.1 ([3]). The dimension of Schur multiplier of 3, 4, 5-dimensional non-abelian nilpotent Lie alge-
bras are as follows:

(i) dimM(L3,2) = 2, dimM(L4,2) = 4 and dimM(L4,3) = 2,
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(ii) dimM(L5,2) = 7, dimM(L5,8) = 6 and dimM(L5,4) = 5,

(iii) dimM(L5,6) = dimM(L5,7) = dimM(L5,9) = 3, and dimM(L5,3) = dimM(L5,5) = 4.

Lemma 2.2 ([3]). The dimension of Schur multiplier of 6-dimensional non-abelian nilpotent Lie algebras
over a field of characteristic different from 2, are as follows:

(i) dimM(L5,2 ⊕ F ) = 11, dimM(L5,4 ⊕ F ) = dimM(L5,8 ⊕ F ) = 9, dimM(L5,3 ⊕ F ) = dimM(L5,5 ⊕
F ) = 7, dimM(L5,6 ⊕ F ) = dimM(L5,7 ⊕ F ) = dimM(L5,9 ⊕ F ) = 5,

(ii) dimM(L6,14) = dimM(L6,16) = 2,

(iii) dimM(L6,15) = dimM(L6,17) = dimM(L6,18) = 3,

(iv) dimM(L6,13) = dimM(L6,28) = dimM(L6,21(ε)) = 4,

(v) dimM(L6,11) = dimM(L6,12) = dimM(L6,20) = dimM(L6,19(ε)) = dimM(L6,24(ε)) = 5,

(vi) dimM(L6,10) = dimM(L6,23) = dimM(L6,25) = dimM(L6,27) = 6,

(vii) dimM(L6,26) = dimM(L6,22(ε)) = 8.

Nilpotent n-Lie algebras up to dimension n+ 3 over an arbitrary field, are well-known. There is just one
non-abelian nilpotent n-Lie algebra with dimension n+1. This algebra is H(n, 1). There is two non-abelian
nilpotent n-Lie algebras with dimension n+2. This algebras are H(n, 1)⊕F (1) and An,n+2,1. There is seven
non-abelian nilpotent n-Lie algebras with dimension n+ 3 when n > 2. This algebras are An,n+2,1 ⊕ F (1),
H(n, 1)⊕ F (2) and An,n+3,i with 1 ≤ i ≤ 5.

The value of s(A) for n+ 1,n+ 2,n+ 3-dimensional non-abelian nilpotent n-Lie algebras is as following
lemma.

Lemma 2.3. (i) s(H(n, 1)) = s(H(n, 1)⊕ F (1)) = 0 and s(An,n+2,1) = n.

(ii) s(An,n+2,1 ⊕ F (1)) = s(An,n+3,2) =
(
n+2
n

)
− n− 1, s(H(n, 1)⊕ F (2)) = 0,

(iii) s(An,n+3,1) =
(
n+2
n

)
− 3n+ 1, s(An,n+3,4) =

(
n+2
n

)
− n, s(An,n+3,5) = s(An,n+3,3) =

(
n+2
n

)
− 2.

Proof. (i) By Theorem 3.3 of [6], we have dimM(H(n, 1)) = dimM(An,n+2,1) = n and dimM(H(n, 1) ⊕
F (1)) = 2n. By direct calculation the proof is correct.

(ii) According to Lemma 4 of [3] and definition of s(A), the proof is obvious.

The notations of nilpotent Lie algebras in this paper are same as used in [2, 11].
Darabi et al. [6] classified all nilpotent n-Lie algebras A for which s(A) = 0, 1, 2 and applying it in order

to determine all nilpotent n-Lie algebras A satisfying 0 ≤ t(A) ≤ 8. Moreover, all nilpotent n-Lie algebras
A for which s(A) = 3 are classified in [7].

Lemma 2.4 ([6, 7]). Suppose A is a d-dimensional non-abelian nilpotent n-Lie algebra. Then

(1) s(A) = 0 if and only if A ∼= H(n, 1)⊕ F (d− n− 1).

(2) s(A) = 1 if and only if A ∼= L5,8.

(3) s(A) = 2 if and only if A is isomorphic to L4,3, A3,6,1, L5,8⊕F (1) or H(2, t)⊕F (d− 2t− 1) for some
t ≥ 2.

(4) s(A) = 3 if and only if A is isomorphic to A3,5,2,L5,3,L5,5,L6,22(ε),L6,26,L5,8⊕F (2),or H(3, t)⊕F (d−
3t− 1) for some t ≥ 2.

Lemma 2.5. Let A be a non-abelian d-dimensional nilpotent n-Lie algebra. Then

(i) s(A) = 4 if and only if A is isomorphic to one of the following Lie algebras L5,8 ⊕ F (3), L4,3 ⊕ F (2),
L5,5 ⊕ F (1), L5,6, L5,7, L5,9,L6,22(ε)⊕ F (1), 37A, H(4, r)⊕ F (d− 4r − 1) (r ≥ 2), A4,6,1 or A4,7,1.
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(ii) s(A) = 5 if and only if A is isomorphic to one of the following Lie algebras L5,8 ⊕ F (4), L4,3 ⊕ F (3),
L5,5 ⊕ F (2), L6,22(ε)⊕ F (2), L6,26 ⊕ F (1), L6,10, L6,23, L6,25, L6,27, 37B, 37D, H(5, r)⊕ F (d− 5r −
1) (r ≥ 2) or A5,7,1.

The following Lemma can be found immediately by [15].

Lemma 2.6. Let A be a non-abelian d-dimensional nilpotent Lie algebra. Then

(i) The only 7-dimensional nilpotent Lie algebras with S(A) = 6 are L6,10 ⊕ F (1), 27A and 157.

(ii) The only 8-dimensional nilpotent Lie algebras with S(A) = 6 are L4,3 ⊕ F (4), L5,5 ⊕ F (3) and 37A⊕
F (1).

(iii) The only 7-dimensional nilpotent Lie algebras with S(A) = 7 are 27B, L6,23 ⊕ F (1), L6,25 ⊕ F (1),
257A, 257C and 257F .

Now we state and prove our main theorems.

Theorem 2.7. Suppose A is a d-dimensional non-abelian nilpotent n-Lie algebra with n > 2. Then

(1) t(A) = 17 if and only if A ∼= A3,6,5.

(2) t(A) = 18 if and only if A is isomorphic to H(4, 1)⊕ F (1) or A4,6,2.

Proof. We classified nilpotent n-Lie algebras with n > 2 and t(A) = 17, 18. Let A be a nilpotent n-Lie
algbera (n > 2). In the following cases, by relation (1), s(A) in negative.

(i) n ≥ 4 and dimA ≥ n+ 4,

(ii) n = 3 and dimA ≥ 8.

Let n = 3 and dimA = 7. If t(A) = 17, then by relation (1), s(A) = 4. By Lemma 2.5, the only
algebra satisfying this condition is A4,7,1. Similarly, if t(A) = 18, by relation (1), s(A) = 5. By Lemma 2.5,
the only algebra satisfying this condition is A5,7,1. For the rest of the proof, it is enough to search among
d-dimensional nilpotent n-Lie algebras with d ≤ n + 3. By lemmas 2.3, the only nilpotent n-Lie algebras
satisfying this condition are A17,19,1 and A18,20,1 with t(A) = 17 and t(A) = 18, respectively.

The following theorem characterize nilpotent Lie algebras with t(A) = 11, 12.

Theorem 2.8. Suppose A is a nilpotent Lie algebra. Then

(i) t(A) = 11 if and only if A is isomorphic to H(2, 1)⊕F (10), H(2, 2)⊕F (6), H(2, 3)⊕F (4), H(2, 4)⊕
F (2), H(2, 5), L6,22(ε)⊕ F (2), L6,10 ⊕ F (1), 27A, 157, L6,13, L6,28 or L6,21(ε).

(ii) t(A) = 12 if and only if A is isomorphic to H(2, 1)⊕F (11), H(2, 2)⊕F (7), H(2, 3)⊕F (5), H(2, 4)⊕
F (3), H(2, 5)⊕F (1), L5,8⊕F (4), L4,3⊕F (4), L5,5⊕F (3), 37A⊕F (3), 27B, L6,23⊕F (1), L6,25⊕F (1),
257A, 257C, 257F , L6,15, L6,17 or L6,18.

Proof. (i) Let A be a d-dimensional nilpotent Lie algebra with t(A) = 11. By relation (1), we have 13 =
d + s(A). By lemma 2.1, there is no d-dimensional nilpotent Lie algebra with t(A) = 11 for d ≤ 5.
According to lemma 2.2, the only 6-dimensional nilpotent Lie algebras with t(A) = 11 are L6,13,L6,28 and
L6,21(ε). For 7-dimensional nilpotent Lie algebra A with t(A) = 11, we have s(A) = 6. By lemma 2.6, the
only 7-dimensional nilpotent Lie algebras with t(A) = 11 are L6,10 ⊕ F (1), 27A and 157.

For 8-dimensional and 9-dimensional nilpotent Lie algebra A with t(A) = 11, we have s(A) = 5 and
s(A) = 4 respectively. By lemma 2.5, the only 8-dimensional nilpotent Lie algebra with t(A) = 11 are
L6,22(ε)⊕ F (2). There is no 9-dimensional nilpotent n-Lie algebra with t(A) = 11.

Similarly, nilpotent Lie algebras with t(A) = 11 of dimension 10, 11, 12 and 13 are algebras with s(A) =
3, 2, 1 and 0, respectively. By Theorem 2.4, the following algebras are obtained:

H(2, 1)⊕ F (10), H(2, 2)⊕ F (6), H(2, 3)⊕ F (4), H(2, 4)⊕ F (4), H(2, 5).
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Since s(A) ≥ 0, the proof is complete.
(ii) Let A be a d-dimensional nilpotent Lie algebra with t(A) = 12. By relation (1), we have 14 = d+s(A).

Similarly case (i), there is no d-dimensional nilpotent Lie algebra with t(A) = 12 if d ≤ 5. The only 6-
dimensional nilpotent Lie algebras with t(A) = 12 are L6,15, L6,17 and L6,18 by lemma 2.2.

For the 7-dimensional nilpotent Lie algebra A with t(A) = 12, we have s(A) = 7. By lemma 2.6, the
only 7-dimensional nilpotent Lie algebras with t(A) = 12 are 27B, L6,23 ⊕ F (1), L6,25 ⊕ F (1), 257A, 257C
and 257F .

For the 8-dimensional nilpotent Lie algebra A with t(A) = 12, we have s(A) = 6. By lemma 2.6, the
only 8-dimensional nilpotent Lie algebras with t(A) = 12 are L4,3 ⊕ F (4), L5,5 ⊕ F (3) and 37A⊕ F (1).

By lemma 2.5, the only 9-dimensional nilpotent Lie algebra with t(A) = 12 are L5,8⊕F (4). There is no
10-dimensional nilpotent n-Lie algebra with t(A) = 12.

Similarly, nilpotent Lie algebras with t(A) = 12 of dimension 11, 12, 13 and 14 are algebras with s(A) =
3, 2, 1 and 0, respectively. By lemma 2.4, the following algebras are obtained.

H(2, 1)⊕ F (11), H(2, 2)⊕ F (7), H(2, 3)⊕ F (5), H(2, 4)⊕ F (3), H(2, 5)⊕ F (1).

As s(A) ≥ 0, this completes the proof.

We have listed the obtained n-Lie algebras in this paper in Table 1.

Table 1: all n-Lie algebras are obtained in this paper.
Name Non-zero multiplication

An,n+2,1 [e1, . . . , en] = en+1, [e2, . . . , en+1] = en+2

An,n+3,1 [e1, . . . , en] = en+1, [e2, . . . , en, en+2] = en+3

An,n+3,2 [e1, . . . , en] = en+1, [e2, . . . , en+1] = [e1, e3, . . . , en, en+2] = en+3

An,n+3,3 [e1, . . . , en] = en+1, [e2, . . . , en+1] = en+2, [e1, e3, . . . , en+1] = en+3

An,n+3,4 [e1, . . . , en] = en+1, [e2, . . . , en+1] = en+2, [e2, . . . , en, en+2] = en+3

An,n+3,5
[e1, . . . , en] = en+1, [e2, . . . , en+1] = en+2,

[e2, . . . , en, en+2] = [e1, e3, . . . , en+1] = en+3

L4,3 [e1, e2] = e3, [e1, e3] = e4
L5,5 [e1, e2] = e3, [e1, e3] = [e2, e4] = e5
L5,8 [e1, e2] = e4, [e1, e3] = e5
L6,10 [e1, e2] = e3, [e1, e3] = [e4, e5] = e6
L6,13 [e1, e2] = e3, [e1, e3] = [e2, e4] = e5, [e1, e5] = [e3, e4] = e6
L6,15 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = [e2, e3] = e5, [e1, e5] = [e2, e4] = e6
L6,17 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = [e2, e3] = e6
L6,18 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6
L6,21(ε) [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5, [e1, e4] = e6, [e2, e5] = εe6
L6,22(ε) [e1, e2] = [e3, e4] = e5, [e1, e3] = e6, [e2, e4] = εe6
L6,23 [e1, e2] = e3, [e1, e3] = [e2, e4] = e5, [e1, e4] = e6
L6,25 [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6
L6,28 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e6
27A [e1, e2] = e6, [e1, e4] = [e3, e5] = e7
27B [e1, e2] = [e3, e4] = e6, [e1, e5] = [e2, e3] = e7
157 [e1, e2] = e3, [e1, e3] = [e2, e4] = [e5, e6] = e7
37A [e1, e2] = e5, [e2, e3] = e6, [e2, e4] = e7
257A [e1, e2] = e3, [e1, e3] = [e2, e4] = e6, [e1, e5] = e7
257C [e1, e2] = e3, [e1, e3] = [e2, e4] = e6, [e2, e5] = e7
257F [e1, e2] = e3, [e2, e3] = [e4, e5] = e6, [e2, e4] = e7
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