

Action of automorphisms on complex irreducible characters: groups of type ${\bf A}$

Farrokh Shirjian¹ Tarbiat Modares University

Ali Iranmanesh Tarbiat Modares University

Abstract

In the study of representations of finite reductive groups, Jordan decomposition of characters associates to each character in a rational Lusztig series a unipotent character of the centralizer of a semi-simple element in the dual group. In this paper we report our recent work on how and in which sense one can construct a Jordan decomposition of characters of \mathbf{G}^F which is equivariant with respect to $\operatorname{Aut}(\mathbf{G}^F)$ whenever \mathbf{G} is a simple simply-connected algebraic group of type A defined over a finite field. This is part of the project to determine the action of $\operatorname{Aut}(G)$ on $\operatorname{Irr}(G)$ for all finite (quasi-)simple groups G.

Keywords: Irreducible characters, Automorphisms Mathematics Subject Classification [2010]: 20C15, 20C05

1 Introduction

A finite reductive group is the fixed-point subgroup $G := \mathbf{G}^F$ of a connected reductive algebraic group \mathbf{G} defined over the finite field \mathbb{F}_q of characteristic p > 0, where $F : \mathbf{G} \to \mathbf{G}$ is the Frobenius map corresponding to this \mathbb{F}_q -structure. In recent years, many conjectures in representation theory of finite reductive groups have been "reduced" to check some new technical conditions about quasi-simple groups of Lie type. These new conditions to check involve analysing the action of automorphisms of a quasi-simple Lie-type group on the set of its irreducible characters.

Question. ([5, Problem 2.33]) For G a quasi-simple group of Lie type, determine the action of Aut(G) on Irr(G).

For $G = \operatorname{SL}_n(q)$ or $\operatorname{SU}_n(q)$, we first determine the action of automorphisms on irreducible characters of G. Then, considering a larger framework, we determine the action of automorphisms on irreducible characters of G, for G being a general finite reductive group of type A. Using the usual Gelfand-Graev characters of G, Brunat and Himstedt turned the action of automorphisms on regular characters to the action on the corresponding labels (s,ξ) , see [1, 2]. In this paper, using a regular embedding $\mathbf{G} \to \widetilde{\mathbf{G}}$ into a connected-center group $\widetilde{\mathbf{G}}$, it is shown that the various components of restrictions of irreducible characters of $\widetilde{\mathbf{G}}$ to \mathbf{G} can be distinguished by the G-classes of their unipotent support which are equivarant under the action of automorphisms. This generalizes a recent result of [3] and provides a useful tool for investigating local-global conjectures as one usually need to deal with Levi subgroups.

 $^{^{1}}$ speaker

1.1 Notation.

We denote by $\operatorname{Res}_{H}^{G}\chi$ the restriction of a character χ of G to some subgroup $H \leq G$. Also the induction of a character ψ of H to G is denoted by $\operatorname{Ind}_{H}^{G}\psi$. For $N \triangleleft G$ and $\chi \in \operatorname{Irr}(G)$, we denote by $\operatorname{Irr}(N|\chi)$ the set of irreducible constituents of the restriction $\operatorname{Res}_{N}^{G}\chi$. The stabilizer of $\psi \in \operatorname{Irr}(N)$ under the action of G on $\operatorname{Irr}(N)$ is denoted by G_{ψ} . We also write $\operatorname{Aut}(\mathbf{G}, F)$ for the set of automorphisms of \mathbf{G} commuting with the Frobenius map F. Other notation are standard or will be defined where needed.

2 Main results

Let **G** be a connected reductive algebraic group defined over an algebraic closure $\mathbb{K} = \overline{\mathbb{F}_p}$ of the finite field of prime order p and let $F : \mathbf{G} \to \mathbf{G}$ be a Frobenius endomorphism defining an \mathbb{F}_q -rational structure $G = \mathbf{G}^F$ on **G**. Assuming p is a good prime for **G** a theory of generalised Gelfand–Graev characters (GGGCs) was developed by Kawanaka in [4]. These are certain characters Γ_u of G which are defined for any unipotent element $u \in G$. Note that $\Gamma_u = \Gamma_v$ whenever $u, v \in G$ are G-conjugate so the GGGCs are naturally indexed by the unipotent conjugacy classes of G.

It has been shown by Lusztig that the irreducible characters of $G = \mathbf{G}^F$ can be partitioned into the so-called geometric Lusztig series, labelled by the semisimple \mathbf{G}^* -classes of \mathbf{G}^{*F^*} , where (\mathbf{G}^*, F^*) denotes a pair dual to (\mathbf{G}, F) . If such a series is labelled by a semisimple class with representative s, then it contains $|A_{\mathbf{G}^*}(s)^{F^*}|$ semisimple characters, where $A_{\mathbf{G}^*}(s) = C_{\mathbf{G}^*}(s)/C_{\mathbf{G}^*}^\circ(s)$ is the component group of s. The set of semisimple (and regular) characters of G can be naturally parametrized by pairs (s,ξ) where s runs over a set of representatives of the semisimple classes of $G^* = \mathbf{G}^{*F^*}$ and $\xi \in \operatorname{Irr}(A_{G^*}(s))$, where $A_{G^*}(s) := A_{\mathbf{G}^*}(s)^{F^*}$. For any $\lambda \in \operatorname{Irr}(C_{G^*}^\circ(s))$, we denote by $A_{G^*}(s)_{\lambda}$ the stabilizer of λ under $A_{G^*}(s)$. The main goal of this paper is to show the following.

Theorem 2.1. [6] Assume that $G = \operatorname{SL}_{n}^{\epsilon}(q)$. Then, for any semisimple element $s \in G^{*}$ and any unipotent character $\lambda \in \operatorname{Irr}(C_{G^{*}}^{\circ}(s))$, there exists a morphism $\omega_{s,\lambda}^{0} : H^{1}(F, Z(\mathbf{G})) \to \operatorname{Irr}(A_{G^{*}}(s)_{\lambda})$ such that for the irreducible character $\chi_{s,\lambda,\omega_{s,\lambda}^{0}(z)} \in \operatorname{Irr}(G)$, parametrized by triple $(s,\lambda,\omega_{s,\lambda}^{0}(z))$ for some $z \in H^{1}(F, Z(\mathbf{G}))$, one has

$$\gamma_{\chi_{s,\lambda,\omega_{s,\lambda}^0}(z)} = \chi_{\sigma^{*-1}(s),\sigma^*(\lambda),\omega_{s,\lambda}^0(\sigma(z))},$$

where $\sigma \in \langle F_p, \gamma \rangle \leq \operatorname{Out}(G)$ and $\sigma^* \in \operatorname{Aut}(G^*)$ is its dual automorphism.

Using the above theorem, we obtain a short proof of the stabilizer condition in the so-called inductive McKay condition for the irreducible characters of G.

Corollary 2.2. If $\widetilde{\chi} = \chi_{\widetilde{s},\lambda} \in \operatorname{Irr}(\widetilde{G})$, then for the irreducible character $\chi_0 = \chi_{s,\lambda,1} \in \operatorname{Irr}(G|\widetilde{\chi})$ we have

$$(\widetilde{G} \times \langle F_p, \gamma \rangle)_{\chi_0} = \widetilde{G}_{\chi_0} \times (\langle F_p, \gamma \rangle)_{\chi_0}.$$

Acknowledgment

This work was supported by the Grant No. 98012009 from the Iranian National Science Foundation (INSF).

References

- Brunat, O.: On semisimple classes and semisimple characters in finite reductive groups, Ann. Inst. Fourier (Grenoble) 62 (2012) 1671–1716.
- [2] Brunat, O., Himstedt, F.: On equivariant bijection relative to the defining characteristic. J. Algebra 334, 150–174 (2011).

- [3] Cabanes, M., Späth, B.: Equivariant character correspondences and inductive McKay condition for type A. J. Reine Angew. Math. 728, 153–194 (2017).
- [4] Kawanaka, N.: Generalized Gelfand-Graev representations and Ennola duality. In: Algebraic groups and related topics (Kyoto/Nagoya, 1983). Vol. 6. Adv. Stud. Pure Math. Amsterdam: North-Holland, 175–206, (1985).
- [5] Malle, G., Kessar, R.: Local-global conjectures and blocks of finite simple groups. In: Groups St Andrews 2017 in Birmingham. Cambridge Univ. Press, Cambridge, 70–105 (2019).
- [6] Shirjian, F., Iranmanesh, A: Action of automorphisms on irreducible characters of groups of type A, arXiv preprint arXiv:2108.09259.

Email: farrokh.shirjian@modares.ac.ir Email: iranmanesh@modares.ac.ir