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Abstract

In this talk, after reviewing the concepts of continuous lifting of paths (homotopies), covering maps and
fundamental groups, first we mention a result on incomplete lifting for local homeomorphism. Second, we
prove some of the well-known properties of covering maps for local homeomorphisms. Also, we investigate
the influence of the fundamental group on incomplete lifting.
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1 Introduction

J. Brazas [1, Definition 3.1] generalized the concept of covering map by the phrase “A semicovering map is
a local homeomorphism with continuous lifting of paths and homotopies”. Note that a map p : Y → X has
continuous lifting of paths if ρp : (ρY )y → (ρX)p(y) defined by ρp(α) = p ◦α is a homeomorphism for all
y ∈ Y, where (ρY )y = {α : I = [0, 1] → Y |α(0) = y}. Also A map p : Y → X has continuous lifting of
homotopies if Φp : (ΦY )y → (ΦX)p(y) defined by Φp(φ) = p ◦ φ is a homeomorphism for all y ∈ Y , where
elements of (ΦY )y are endpoint preserving homotopies of paths starting at y. (see [2])

In this paper, all maps f : X → Y between topological spaces X and Y are continuous functions. We
recall that a continuous map p : X̃ → X is called a local homeomorphism if for every point x̃ ∈ X̃ there
exists an open neighborhood W̃ of x̃ such that p(W̃ ) ⊂ X is open and the restriction map p|W̃ : W̃ → p(W̃ )

is a homeomorphism. In this paper, we denote a local homeomorphism p : X̃ → X by (X̃, p) and assume
that X̃ is path connected and p is surjective.

Definition 1.1. ([4]). Let X̃ and X be topological spaces and let p : X̃ → X be continuous. An open
set U in X is evenly covered by p if p−1(U) is a disjoint union of open sets Si in X̃, called sheets, with
p|Si : Si → U a homeomorphism for every i.

Definition 1.2. ([4]). If X is a topological space, then an ordered pair (X̃, p) is a covering space of X if:

1. X̃ is a path connected topological space;

2. p : X̃ → X is continuous;
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3. each x ∈ X has an open neighborhood U = Ux that is evenly covered by p.

For a topological space X, by a path in X we mean a continuous map α : [0; 1] → X . The points
α(0) and α(1) are called the initial point and the terminal point of α, respectively. A loop α is a path
with α(0) = α(1). For a path α : [0; 1] → X, α−1 denotes a path such that α−1(t) = α(1 − t), for all
t ∈ [0, 1]. Denote [0, 1] by I, two paths α, β : I → X with the same initial and terminal points are called
homotopic relative to end points if there exists a continuous map F : I × I → X such that

F (t, s) =


α(t) s = 0

β(t) s = 1

α(0) = β(0) t = 0

α(1) = β(1) t = 1.

Homotopy relative to end points is an equivalent relation and the homotopy class containing a path α is
denoted by [α]. For paths α, β : I → X with α(1) = β(0), α ∗ β denotes the concatenation of α and β that
is a path from I to X such that

(α ∗ β)(t) =

{
α(2t) 0 ≤ t ≤ 1/2

β(2t− 1) 1/2 ≤ t ≤ 1.

The set of all homotopy classes of loops relative to the end point x in X under the binary operation
[α][β] = [α ∗ β] forms a group and called the fundamental group of X denoted by π1(X,x) (see[4]). The set
of all loops with initial point x in X called the loop space of X denoted by Ω(X,x) (see [4]).

2 Main results

In this section, we obtained some conditions under which a local homeomorphism is a semicovering map.
First, we intend to show that if p : X̃ → X is a local homeomorphism, X̃ is Hausdorff and sequential
compact, then p is a semicovering map. In order to do this, we are going to study a local homeomorphism
with a path which has no lifting.

Lemma 2.1. Let p : X̃ → X be a local homeomorphism, f be an arbitrary path in X and x̃0 ∈ p−1(f(0)) such
that there is no lifting of f starting at x̃0. If Af = {t ∈ I |f |[0,t] has a lifting f̂t on [0, t] with f̂t(0) = x̃0},
then Af is open and connected. Moreover, there exists α ∈ I such that Af = [0, α).

Proof. Let β be an arbitrary element of Af . Since p is a local homeomorphism, there exists an open

neighborhood W at f̂β(β) such that p|W : W → p(W ) is a homeomorphism. Since f̂β(β) ∈ W , there exists

an ε ∈ I such that f [β, β + ε] is a subset of p(W ). We can define a map f̂β+ε as follows:

f̂β+ε(t) =

{
f̂β(t) t ∈ [0, β]

p|−1
W (f(t)) t ∈ [β, β + ε]

.

Hence (0, β + ε) is a subset of Af and so Af is open.

Suppose t, s ∈ A. Without loss of generality we can suppose that t ≥ s. By the definition of Af , there

exists f̂t and so [0, t] is a subset of Af . Also every point between s and t belongs to Af hence Af is connected.
Since Af is open connected and 0 ∈ Af , there exists α ∈ I such that Af = [0, α).

Now, we prove the existence and uniqueness of a concept of a defective lifting.

Lemma 2.2. let p : X̃ → X be a local homeomorphism with unique path lifting property, f be an arbitrary
path in X and x̃0 ∈ p−1(f(0)), such that there is no lifting of f starting at x̃. Then, using notation of the
previous lemma, there exists a unique continuous map f̃α : Af = [0, α)→ X̃ such that pof̃α = f |[0,α).



Influence of the fundamental group on incomplete lifting and its application 129

Proof. First, we defined f̃α : Af = [0, α)→ X̃ by f̃α(s) = f̂s(s). The map f̃α is well define since if s1 = s2,

then by unique path lifting property of p we have f̂s1 = f̂s2 and so f̂s1(s1) = f̂s2(s2) hence f̃α(s1) = f̃α(s2).
The map f̃α is continuous since for any element s of Af , f̂α+s

2
is continuous at s and f̂α+s

2
= f̂s on [0, s].

Thus there exists ε > 0 such that f̃α|(s−ε,s+ε) = f̂α+s
2
|(s−ε,s+ε). Hence f̃α is continuous at s. For uniqueness,

if there exists f̂α : [0, α)→ X̃ such that p ◦ f̂α = f |[0,α), then by unique path lifting property of X̃ we must

have f̃α = f̂α.

Definition 2.3. By Lemmas 2.1 and 2.2, we called f̃α the incomplete lifting of f by p starting at x̃0.

Note that every compact metric space is sequential compact. In the following, we present two semicov-
ering maps on compact metric spaces.

Example 2.4. We show that p : S1×S1 −→ S1×S1 defined by (x, y) −→ (xnym, xsyt) is a semicovering map,
where m,n, s, t ∈ N such that n

s 6=
m
t . Let exp(θ) = e2πiθ, then we can consider p as p(exp(α), exp(β)) =

(exp(nα + mβ), exp(sα + tβ)). As a notation put exp(γ, η) = {exp(θ) ∈ S1|γ ≤ θ ≤ η}. Suppose l =
Max{n,m, s, t} and U = (exp(α− π

2l , α+ π
2l ))× (exp(β− π

2l , β+ π
2l )) is an open neighborhood of an element

(exp(α), exp(β)) ∈ S1× S1. It is clear that p|U : U −→ exp(n(α− π
2l ) +m(β − π

2l ), n(α+ π
2l ) +m(β + π

2l ))×
exp(s(α− π

2l ) + t(β − π
2l ), s(α+ π

2l ) + t(β + π
2l )) is a homeomorphism. Note that

(m(α+
π

2l
) + n(α+

π

2l
))− (m(α− π

2l
) + n(α− π

2l
)) <

m

l
(
π

2
+
π

2
) +

n

l
(
π

2
+
π

2
) < 2π

and

(s(β +
π

2l
) + t(β +

π

2l
))− (s(β − π

2l
) + t(β − π

2l
)) <

s

l
(
π

2
+
π

2
) +

t

l
(
π

2
+
π

2
) < 2π.

Therefore, if p(exp(α1), exp(β1)) = p((exp(α2), exp(β2))), then{
nα1 +mβ1 = nα2 +mβ2

sα1 + tβ1 = sα2 + tβ2
so

{
n(α1 − α2) = m(β2 − β1)
s(α1 − α2) = t(β2 − β1)

. Since n
s 6=

m
t , we have α1 = α2 and β1 = β2.

Thus p is a local homeomorphism. Note that S1 × S1 is a compact metric space and so it is sequential
compact hence by Theorem 2.5 p is a semicovering map. It should be mentioned that every semicovering
of a path-connected, locally path-connected, semilocally simply connected space is a covering. Hence p is a
covering map. Note that finding an evenly covered neighborhood by p for an arbitrary element of S1 × S1

does not seem to be an easy computational task.

Theorem 2.5. If X̃ is Hausdorff and sequential compact and p : X̃ −→ X is a local homeomorphism, then
p is a semicovering map.

Example 2.6. In Figure 1, the map p transfer every ci, j to ci directly for i ∈ N and 1 ≤ j ≤ 4. Since the
domain of p is compact metric, it is a sequential compact space and using Theorem 2.5 we can conclude
that p is a semicovering map.

Clearly the composition of two local homeomorphisms is a local homeomorphism hence by Theorem 2.5
we have the following corollary.

Corollary 2.7. If pi : X̃i −→ X̃i−1 for i = 1, 2 are local homeomorphisms and X̃2 is Hausdorff and
sequential compact, then p1 ◦ p2 is a semicovering map.

Chen and Wang [3, Theorem 1] showed that a closed local homeomorphism p from a Hausdorff space
X̃ onto a connected space X is a covering map, when there exists at least one point x0 ∈ X such that
|p−1(x0)| = k, for some finite number k. In the following theorem, we extend this result for semicovering
map without finiteness condition on any fiber.

Theorem 2.8. Let p be a closed local homeomorphism from a Hausdorff space X̃ onto a space X. Then p
is a semicovering map.

Remark 2.9. Note that the local homeomorphism p : S1×S1 −→ S1×S1, introduced in Example 2.4, is a
closed map since S1 × S1 is Hausdorff and compact. Thus using Theorem 2.8 we can obtain another proof
to show that p is semicovering.
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Figure 1: A semicovering map of a sequential compact space
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