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G is a finite group.

Irr(G ) denotes the set of irreducible complex characters of G .

If χ ∈ Irr(G ), then χ(1) is the degree of χ.

We have that χ(1) divides |G |.

Lućıa Sanus On character degrees



G is a finite group.

Irr(G ) denotes the set of irreducible complex characters of G .

If χ ∈ Irr(G ), then χ(1) is the degree of χ.

We have that χ(1) divides |G |.
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Character degrees in Finite Groups is one of the fundamental
subjects in Representation Theory
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For instance, two of the major problems in representation
theory are about character degrees:

McKay Conjecture

If G is a finite group, p a prime, then

|Irrp′(G)| = |Irrp′(NG (P))|

where P ∈ Sylp(G).

Irrp′(G) is the set of irreducible

complex characters of G of degree

not divisible by p.

Brauer’s Height Zero Conjecture

Suppose that G is a finite group, p is
a prime and B is a p-block of G with
defect group D.
All irreducible complex characters in
B have height zero if and only if D is
abelian.
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A classical problem is to find relationships between character
degrees and the structure of the group
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This is one of the essential results:

Theorem (Itô-Michler)

Let p be a prime. Then p does not divide χ(1) for all χ ∈ Irr(G ) if
and only if G has an abelian normal Sylow p-subgroup.

As simple as it looks, it was proved only after the Classification of
Finite Simple Groups.

In fact this is one of the first applications of the classification to

character theory.
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Let p be a prime. Then p does not divide χ(1) for all χ ∈ Irr(G ) if
and only if G has an abelian normal Sylow p-subgroup.

As simple as it looks, it was proved only after the Classification of
Finite Simple Groups.

In fact this is one of the first applications of the classification to

character theory.
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Often the Itô-Michler’s Theorem is presented with a dual result by
John Thompson:

Theorem

Let p be a prime. If p divides the non-linear irreducible
character degrees of G , then G has a normal p-complement.

This does not use CFSG.
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Another related unpublished result due to Navarro and Tiep:

Theorem

Suppose that G is a finite group, and let p 6= q be primes. Then
Irrp′(G ) = Irrq′(G ) if and only if there are abelian P ∈ Sylp(G )
and Q ∈ Sylq(G ) such that NG (P) = NG (Q).

where Irrp′(G ) is the set of irreducible characters of p′-degree.

The proof relies on the CFSG.
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Our main concern is how to generalize these results and others
in a single statement.

Is this even possible?
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Let π be a set of primes.

Irrπ(G ) = {χ ∈ Irr(G ) | the primes dividing χ(1) are in π} .

Examples :

Irr∅(G ) = {χ ∈ Irr(G ) | χ(1) = 1} = Lin(G ) .

IrrP(G ) = Irr(G ) .

where P is the set of all the primes.
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In all these problems, the main question is to characterize when

Irrπ(G ) = Irrρ(G )

by group theoretical properties, where π and ρ are sets of primes.
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Itô-Michler

Irrp′(G ) = IrrP(G )

Thompson

Irrp′(G ) = Irr∅(G )

Navarro-Tiep

Irrp′(G ) = Irrq′(G )

Again: Can these theorems be unified in a single statement?
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Itô-Michler

Irrp′(G ) = IrrP(G )

Thompson

Irrp′(G ) = Irr∅(G )

Navarro-Tiep

Irrp′(G ) = Irrq′(G )

Again: Can these theorems be unified in a single statement?
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MAIN IDEA/ TOOL

The McKay conjecture:

|Irrp′(G )| = |Irrp′(NG (P))|

where P ∈ Sylp(G ).

Solved for p-solvable groups.

In fact, it is believed that Irrp′(G ) and NG (P)/P ′ have deeper
relationships.

Our work also shows that this is the case.

If p′ is replaced by π and G is π-separable, there is also a McKay
theorem for Hall π-subgroups by T. Wolf.
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PART I. Complex character degrees

G. Navarro, N. Rizo, L. S. Character degrees in separable groups

to appear in Proceedings of the American Mathematical Society.
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Recall that a group G is π-separable if all the composition factors
of G are π or π′ groups.

The π-separable groups have a unique conjugacy class of
π-subgroups of Hall.

(These are the subgroups such that all the prime divisors of |H| are in π and

those of |G : H| are in π′.)
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Theorem A

Let ρ ⊆ π be sets of primes. Suppose that G is a ρ-separable and
a π-separable finite group. Then

Irrπ(G ) = Irrρ(G )

if and only if there exist a Hall π′-subgroup H of G and a Hall
ρ′-subgroup K of G such that NG (K ) = K ′NG (H) and
K ′ ∩NG (H) = H ′.
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Theorem A

Irrπ(G) = Irrρ(G) ⇐⇒ ∃H ∈ Hallπ′(G),K ∈ Hallρ′(G) :
NG (K) = K ′NG (H),K ′ ∩NG (H) = H ′.

Itô-Michler

Irrp′(G) = IrrP(G) ⇐⇒ ∃P ∈ Sylp(G) such that P / G and P ′ = 1.

Set ρ = p′ ⊆ π = P. Have H = 1 ∈ Hallπ′(G) and
K = P ∈ Hallρ′(G) = Sylp(G).

NG (K) = K ′NG (H)⇒ NG (P) = K ′NG (1) = G ⇒ P / G
K ′ ∩NG (H) = H ′ ⇒ P ′ ∩NG (1) = P ′ ∩ G = P ′ = 1.

Lućıa Sanus On character degrees



Theorem A

Irrπ(G) = Irrρ(G) ⇐⇒ ∃H ∈ Hallπ′(G),K ∈ Hallρ′(G) :
NG (K) = K ′NG (H),K ′ ∩NG (H) = H ′.
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Theorem A

Irrπ(G) = Irrρ(G) ⇐⇒ ∃H ∈ Hallπ′(G),K ∈ Hallρ′(G) :
NG (K) = K ′NG (H),K ′ ∩NG (H) = H ′.

Thompson

If Irrp′(G) = Irr∅(G)⇒ ∃H ∈ Hallp′(G) such that H / G .

Set ρ = ∅ ⊆ π = p′.
Have H = P ∈ Hallπ′(G) = Sylp(G) and K = G .

NG (K) = K ′NG (H)⇒ NG (G) = G = G ′NG (P)

K ′ ∩NG (H) = H ′ ⇒ G ′ ∩NG (P) = P ′.

and by Tate’s theorem, G has a normal p-complement.
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We can also deduce from Theorem A the following results (under
the corresponding separability conditions):

Navarro-Tiep, Wolf

Let p 6= q be primes. Then Irrp′(G ) = Irrq′(G ) if and only if there
are abelian P ∈ Sylp(G ) and Q ∈ Sylq(G ) such that
NG (P) = NG (Q).
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Can Theorem A be true without separability hypotheses?

In all previous cases, we concluded the existence of a π − ρ Hall
subgroup.

Example:

Let G = PSL2(29).

The set of irreducible character degrees
cd(G ) = {1, 15, 28, 29, 30} = {1, 3 · 5, 22 · 7, 29, 2 · 3 · 5}

Let ρ = {29} and π = {2, 5, 29}.

We have that Irrρ(G ) = Irrπ(G ) but G does not possess Hall
{2, 5}-subgroups.
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Corollary B

Let ρ and π be sets of primes. Suppose that G is a ρ-separable and a
π-separable. Then

Irrπ(G ) = Irrρ(G )

if and only if ∃H ∈ Hallπ′(G ),K ∈ Hallρ′(G ) and W ∈ Hall(π∩ρ)′(G )
such that

W ′NG (H) = NG (W ) = W ′NG (K )

NG (H) ∩W ′ = H ′ and

W ′ ∩NG (K ) = K ′ .
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Corollary B

Corollary C

Let ρ and π be sets of primes. Suppose that G is a ρ-separable
and π-separable finite group. Suppose that

Irrπ(G ) = Irrρ(G ) .

If H is a Hall π′-subgroup of G and K is a Hall ρ′-subgroup of G ,
then we have that

NG (K )

K ′
∼=

NG (H)

H ′ .
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Our work is useful to establish more relationships between
character tables and NG (H)

H′ for Hall subgroups H.

Problem

What does the character table X (G ) know about NG (H)
H′ ?
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PART II. p-Brauer characters degrees

L. Bonazzi, G. Navarro, N. Rizo, L. S. Brauer Character degrees
and Sylow normalizers (submitted)
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Degrees of p- Brauer character outside p-solvable
groups have an erratic behavior

The degrees do not necessarily divide the order of the group:
A9 has an irreducible 2-Brauer character of degree 26.
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We have a McKay theorem only in p-solvable
groups

2-Brauer irreducible characters of A5

Let P ∈ Syl2(G ). Then NG (P) = A4. We have that
|IBr2′(NG (P))| = |IBr(NG (P))| = 3 6= 1 = |IBr2′(G )|
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2-Brauer irreducible characters of A5

• There is no Itô-Michler theorem.

• There is no Thompson theorem.
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G is p-solvable group

IBr(G ) is the set of irreducible p-Brauer characters of G .

IBrπ(G ) = {χ ∈ IBr(G ) | the primes dividing χ(1) are in π} .
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Theorem D

Let G be a p-solvable group, and let q be a prime. Then

IBrq′(G ) ⊆ IBrp′(G ) if and only if there are

Q ∈ Sylq(G ) and P ∈ Sylp(G ) such that NG (Q) ⊆ NG (P) .

Beltrán-Navarro proved Theorem D with the hypothesis that G
q-solvable

Lućıa Sanus On character degrees



Theorem D

Let G be a p-solvable group, and let q be a prime. Then

IBrq′(G ) ⊆ IBrp′(G ) if and only if there are

Q ∈ Sylq(G ) and P ∈ Sylp(G ) such that NG (Q) ⊆ NG (P) .

Beltrán-Navarro proved Theorem D with the hypothesis that G
q-solvable
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The deepest part of the proof of Theorem D comes from the
following result

Theorem (Malle-Navarro)

Let G be a finite π-separable group. Let H be a Hall π-subgroup,
let K be a π-complement of G , and let q be a prime.
Then every α ∈ Irrq′(H) extends to G if and only if there is
Q ∈ Sylq(H) such that NG (Q) ⊆ NG (K ).

This is an extension of a classical result:
If q does not divide |H|,
all characters of a Hall subgroup extend ⇒ that H has a normal

complement.
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Theorem E

Suppose that G is a p-solvable finite group and let q be a prime
different from p. Then

IBrp′(G ) = IBrq′(G )

if and only if there is a Sylow p-subgroup P of G and a Sylow
q-subgroup Q of G , such that NG (P) = PNG (Q) and Q is
abelian.

Notice that if p does not divide |G |, this is the Itô-Michler theorem.
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Using Isaacs π-characters, the Glauberman-Isaacs correspondence, and

some ad-hoc arguments, it is possible to replace in Theorems D and E p′

by π, p-solvable groups by π-separable, and Sylow p-subgroups by Hall

π-complements.
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