> Mahdi Ebrahimi

School of Mathematics, Institute for Research in Fundamental Sciences (IPM)

Some properties of character graphs

Mahdi Ebrahimi

> Mahdi Ebrahimi

School of Mathematics, Institute for Research in Fundamental Sciences (IPM)

Figure: Georg Frobenius

> Mahdi Ebrahimi

School of Mathematics, Institute for Research in Fundamental Sciences (IPM)

Frobenius determinant theorem

- Let a finite group G have elements g_1, g_2, \ldots, g_n , and let x_{g_i} be associated with each element of G.
- $X_G := (x_{g_ig_j})_{n \times n}$.
- det $X_G = \prod_{j=1}^r P_j(x_{g_1}, x_{g_2}, \dots, x_{g_n})^{\deg P_j}$

Applications

- (Feit–Thompson theorem) Every finite group of odd order is solvable.
- (Burnside's theorem) If G is a finite group of order $p^a q^b$ where p and q are prime numbers, and a and b are non-negative integers, then G is solvable.
- (Richard Brauer and Michio Suzuki)¹ A finite simple group cannot have a generalized quaternion group as its Sylow 2-subgroup.

 R. Brauer, M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Natl. Acad. Sci. USA, 45 (12) (1959) 1757–1759

Some properties of character graphs

> Mahdi Ebrahimi

School of Mathematics, Institute for Research in Fundamental

Sciences

(IPM)

14th Iranian Group Theory Conference

Some properties of character graphs

Mahdi Ebrahimi

School of Mathematics, Institute for Research in Fundamental Sciences (IPM)

Definitions and Notations

Throughout this talk G is a non-abelian finite group. Also

- $\pi(n)$: The set of prime divisors of a positive integer n,
- Irr(G): The set of all irreducible characters of G,
- $\operatorname{cd}(\mathcal{G}) := \{\chi(1) \mid \chi \in \operatorname{Irr}(\mathcal{G})\},\$
- $\rho(G) := \{ p \in \pi(G) | p | \chi(1), \text{ for some } \chi \in Irr(G) \}.$
- R(G): the solvable radical of G.

> Mahdi Ebrahimi

School of Mathematics, Institute for Research in Fundamental Sciences (IPM) Suppose Γ is a finite simple graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma).$

• $\chi(\Gamma)$: The chromatic number of Γ ,

Minimum number of colors needed to color vertices of the graph Γ so that any two adjacent vertices of Γ have deferent colors, is called the chromatic number of $\Gamma.$

- ω(Γ): The clique number of Γ,
 A clique of Γ is a set of mutually adjacent vertices, and that the maximum size of a clique of Γ is called the clique number of Γ.
- Γ^{c} : The complement of Γ .
- diam(Γ): The diameter of Γ .

14th Iranian Group Theory Conference

graphs Mahdi Ebrahimi

Some

properties of character

- Let X be a subset of V(Γ), the subgraph of Γ whose vertex set is X and whose edge set consists of all edges of Γ which have both ends in X is called the induced subgraph of Γ on X and denoted by Γ[X].
- A cut vertex of Γ is a vertex v such that the number of connected component of Γ − v is more than the number of connected component of Γ.
- A maximal connected subgraph B of Γ so that B has no any cut vertex is called a block.

Huppert Conjecture

- Huppert Conjecture: Let G be a finite group and S a finite non-abelian simple group such that cd(G) = cd(S). Then G ≅ S × A, where A is an abelian group.
- Huppert ¹: The conjecture is true for many non-abelian simple groups, including the Suzuki groups, many of the sporadic simple groups, and a few of the simple groups of Lie type.
- Berkovich ²: If a prime *p* divides every non-linear character degree of a group *G*, then *G* is solvable.
- B. Huppert, Some simple groups which are determined by the set of their character degrees I. III., J. Math, 44 (2000) 828–842.
- [2] Y. Berkovich, Finite groups with small sums of degrees of some non-linear irreducible characters, J. Algebra, 171 (1995) 426-443.

Some properties of character graphs

> Mahdi Ebrahimi

The character graph $\Delta(G)$

 \sim

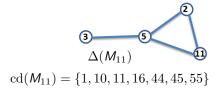
1.1

Some

properties of character graphs Mahdi

Ebrahimi

$$\Delta(G) := (V_{\Delta}, E_{\Delta})$$
$$V_{\Delta} := \rho(G)$$
$$E_{\Delta} := \{e_{p,q} | p, q \in \rho(G), pq | \chi(1), \text{ for some } \chi \in Irr(G) \}$$
This graph was first defined in 1988.¹



 O. Manz, R. Staszewski, W. Willems, On the number of a components of graph related to character degrees, Proc. Amer. Math. Soc., 103(1) (1988) 31-37.

Character graphs of solvable groups

We assume that G is solvable. Then:

- $(1985)^1 \Delta(G)$ has at most two connected components.
- (1988)² Any three primes in $\rho(G)$ must have an edge in $\Delta(G)$ that is incident to two of those primes.
- $(1989)^3 \operatorname{diam}(\Delta(G)) \le 3.$
- [1] O. Manz, Degree problems II: separable character degrees, Comm. Algebra, 13 (1985) 2421-2431.
- [2] P.P. Palfy, On the character degree graph of solvable groups I: Three primes, Period. Math. Hungar., 36, (1998) 61-65.
- [3] O. Manz, W. Willems, T.R. Wolf, The diameter of the character degree graph, J. Reine Angew. Math., 402 (1989) 181-198.

School of Mathematics, Institute for Research in Fundamental

Sciences

(IPM)

Some

properties of character graphs Mahdi Ebrahimi

> Mahdi Ebrahimi

- The solvable group G is said to be disconnected if $\Delta(G)$ is disconnected.
- (2001)¹ If ∆(G) has two connected components so that the cardinalities of the vertex sets of these components are n and N with N ≥ n, then N ≥ 2ⁿ - 1.
- (2001)² Disconnected groups have been completely classified by Lewis into six types.

- P.P. Palfy, On the character degree graph of solvable groups II: Disconnected graphs, Studia Sci. Math. Hungar., 38 (2001) 339-355.
- [2] M.L. Lewis, Solvable groups whose degree graphs have two connected components, J. Group Theory, 4(3) (2001) 255-275.

Mahdi Ebrahimi

School of Mathematics, Institute for Research in Fundamental Sciences (IPM)

- Let G be a solvable group with disconnected character graph $\Delta(G)$.
 - $(1993)^1$: *G* has Fitting height at most 4, and G/F(G) has derived length at most 4 where F(G) is the Fitting subgroup of *G*.
 - (2001) ²: If the connected components of $\Delta(G)$ have at least 2 vertices, then G has Fitting height 3.

Suppose G is solvable and $\operatorname{diam}(\Delta(G)) = 3$.

- (2016)³: There exists a prime p such that G = PH, with P a normal non-abelian Sylow p-subgroup of G and H a p-complement.
- (2016)⁴: The group *G* has Fitting height 3.

[1] O. Manz, T.R Wolf, Representations of solvable groups, Cambridge University Press, Cambridge, 1993.

- [2] M.L. Lewis, Solvable groups whose degrees graphs have two connected components, J. Group Theory, 4 (2001) 255-275.
- [3] C. Casolo, S. Dolfi, E. Pacifici, L. Sanus, Groups whose character degree graph has diameter three, Israel J. Math, 215 (2016) 523-558.
- [4] C.B. Sass, Character degree graphs of solvable groups with diameter three, J. Group Theory, 19 (2016) 1097-1127.

14th Iranian Group Theory Conference

Taketa Problem

For solvable groups, the Taketa problem (also known as the Issacs-Seitz conjecture) is the conjecture for all solvable groups G that $dl(G) \leq |cd(G)|$.

- (2013)¹: The Taketa inequality holds when either all the degrees in cd(G) are odd, when all of the degrees in cd(G) {1} are even, and when all of the degrees in cd(G) {1} have the same set of prime divisors.
- (2015)²: Let G be a solvable group where Δ(G) is connected and has diameter three. Then dl(G) ≤ |cd(G)|.

- K. Aziziheris, M.L. Lewis, Taketa's theorem for some character degree sets, Arch. Math. (Basel), 100(3) (2013) 215-220.
- [2] M.L. Lewis, C.B. Sass, The Taketa problem and character degree graphs with diameter three, Algebr Represent Theory, 18 (2015) 1395-1399.

Some properties of character graphs

> Mahdi Ebrahimi

> Mahdi Ebrahimi

School of Mathematics, Institute for Research in Fundamental Sciences (IPM)

Character graphs of non-solvable groups

Suppose G is a non-solvable group.

- $(2007)^1 \operatorname{diam}(\Delta(G)) \le 3.$
- (2009)² When G is a simple group, then $diam(\Delta(G)) = 3$ if and only if G is the first Janko's sporadic simple group J_1 .
- (2008) 3 $\Delta(G)$ has at most three connected components.

- M.L. Lewis, D.L. White, Diameters of degree graphs of non-solvable groups II, J. Algebra, 312(2) (2007) 634-649.
- [2] D.L. White, Degree graphs of simple groups, Rocky Mountain J. Math, 39(5) (2009) 1713-1739.
- [3] A. Moreto, P.H. Tiep, Prime divisors of character degrees, J. Group Theory, 11 (2008) 341-356.

14th Iranian Group Theory Conference

Some properties of character graphs

> Mahdi Ebrahimi

- (2003)¹ Δ(G) has three connected components if and only if G = S × A, where S ≅ PSL₂(2ⁿ) for some integer n ≥ 2 and A is an abelian group.
- $(2020)^2$ If $\omega(\Delta(G)) \ge 5$, then $|\rho(G)| \le 3\omega(\Delta(G)) 4$.
- (2019)³ If $\Delta(G)$ is regular, then $\Delta(G)^c$ is a bipartite graph.

- M.L. Lewis, D.L. White, Connectedness of degree graphs of non-solvable groups, J. Algebra, 266(1) (2003) 51-76.
- [2] Z. Akhlaghi, S. Dolfi, E. Pacifici, L. Sanus, Bounding the number of vertices in the character degree graph of finite groups, J. Pure Appl. Algebra, 224 (2020) 725-731.
- [3] Z. Sayanjali, Z. Akhlaghi, B. Khosravi, On the regularity of character degree graphs, Bull. Aust. Math. Soc., 3(100) (2019) 428-433.

> Mahdi Ebrahimi

School of Mathematics, Institute for Research in Fundamental Sciences (IPM)

Character graphs with diameter 3

For a finite solvable group G, suppose $\Delta(G)$ has exactly diameter 3. Lewis 1 showed that:

- $\rho(G) = \rho_1 \cup \rho_2 \cup \rho_3 \cup \rho_4$ (Lewis partition of $\rho(G)$), where
- no prime in ho_1 is adjacent to any prime in $ho_3\cup
 ho_4$,
- no prime in ho_4 is adjacent to any prime in $ho_1\cup
 ho_2$,
- every prime in ρ_2 is adjacent to some primes in ρ_3 and vice-versa,
- $\rho_1 \cup \rho_2$ and $\rho_3 \cup \rho_4$ both determine complete subgraphs of $\Delta(G)$.

 M.L. Lewis, Solvable groups with character degree graphs having 5 vertices and diameter 3, Comm. Algebra, 30 (2002) 5485-5503.

> Mahdi Ebrahimi

School of Mathematics, Institute for Research in Fundamental Sciences (IPM) • The first Janko's sporadic simple group J₁ is the only well-known non-sovlable group whose character graph has diameter three.

• If G is a finite group with $diam(\Delta(G)) = 3$, then $\rho(G)$ has a Lewis partition presented at the previous slide¹.

[1] M. Ebrahimi, Character graphs with diameter three, Proc. Amer. Math. Soc., 148(11) (2020) 4615-4619.

14th Iranian Group Theory Conference

Perfect character graphs

- The graph Γ is perfect if ω(Δ) = χ(Δ), for every induced subgraph Δ of Γ.
- (2006)¹. A graph Γ is perfect if and only if it has no induced subgraph isomorphic either to a cycle of odd order at least 5, or to the complement of such a cycle.
- For a finite group G, the graph $\Delta(G)$ is a perfect graph.²
- $\chi(\Delta(G)^c) \le 3.^2$

- M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. of Math., (2), 164(1)(2006) 51-229.
- [2] M. Ebrahimi, The character graph of a finite group is perfect, Bull. Aust. Math. Soc., (2020) DOI: 10.1017/S0004972720001240.

Some properties of character graphs

> Mahdi Ebrahimi

> Mahdi Ebrahimi

School of Mathematics, Institute for Research in Fundamental Sciences (IPM)

Let G be a finite group.

- $\pi \subseteq \rho(G)$ and $|\pi|$ is an odd number.
- (2019)¹ Δ(G)^c[π] is a cycle if and only if O^{π'}(G) = S × A, where A is abelian, S ≅ SL₂(u^α) or S ≅ PSL₂(u^α) and the primes in π {u} are alternately odd divisors of u^α ± 1.

 Z. Akhlaghi, C. Casolo, S. Dolfi, E. pacifici, L. Sanus, On the character degree graph of finite groups, Ann. Mat. 198(5) (2019) 1595-1614.

Hamiltonian cycles

- A graph Γ with *n* vertices is called Hamiltonian if it contains a cycle of length *n*.
- $(2015)^1 \Delta(G)$ is Hamiltonian if and only if $\Delta(G)$ is a block with at least 3 vertices.
- (2020)² Δ(G)^c is a non-bipartite Hamiltonian graph if and only if G ≅ SL₂(2^f) × A, where f ≥ 2 is an integer,

$$||\pi(2^{f}+1)| - |\pi(2^{f}-1)|| \leq 1$$

and A is an abelian group.

- M. Ebrahimi, A. Iranmanesh, M.A. Hosseinzadeh, Hamiltonian character graphs, J. Algebra, 428 (2015) 54-66.
- [2] M. Ebrahimi, Character graphs with non-bipartite Hamiltonian complement., Bull. Aust. Math. Soc., 102 (2020) 91-95.

School of Mathematics, Institute for Research in Fundamental Sciences

(IPM)

Some

properties of character graphs Mahdi Ebrahimi **Dominating sets**

Some

properties of character graphs Mahdi Ebrahimi

School of

- A dominating set for a graph Γ with vertex set V is a subset D of V such that every vertex not in D is adjacent to at least one member of D.
- The domination number of Γ is the number of vertices in a smallest dominating set for Γ.
- If D is a dominating set of Γ such that each x ∈ D is contained in the set of vertices of an odd cycle of Γ, then we say that D is an odd dominating set of Γ.

graphs Mahdi Ebrahimi

Some

properties of character

School of Mathematics, Institute for Research in Fundamental Sciences (IPM) Let G be a finite group. Then the following are equivalent:¹

- The complement of $\Delta(G)$ contains an odd dominating set D.
- The complement of $\Delta(G)$ is non-bipartite with domination number 1.
- Δ(G) is a disconnected graph with non-bipartite complement.

 M. Ebrahimi, Disconnected character graphs and odd dominating sets, Comm. Algebra, 49(8) (2021) 3310-3314.

K_n -free character graphs

Let G be a finite group

- (conjecture)¹ Suppose Δ(G) is K_n-free. If G is solvable, then |ρ(G)| ≤ 2n 2, and if G is non-solvable, then |ρ(G)| ≤ 2n 1.
- (2018)² If G is solvable, then the complement of $\Delta(G)$ is bipartite.
- $G := PSL_2(61) \times PSL_2(67) \times PSL_2(83) \times PSL_2(157).$

- Z. Akhlaghi, H.P. Tong-Viet, Finite groups with K₄-free prime graphs, Algebr. Represent. Theory, 18(1) (2015) 235-256.
- [2] Z. Akhlaghi, C. Casolo, S. Dolfi, K. Khedri, E. Pacifici, On the character degree graph of solvable groups, Proc. Amer. Math. Soc., 146 (2018) 1505-1513.

School of Mathematics, Institute for Research in Fundamental Sciences (IPM)

Some

properties of character graphs Mahdi Ebrahimi

14th Iranian Group Theory Conference

Mahdi Ebrahimi School of

Some

properties of character graphs

- If $\Delta(G)$ is K_4 -free, then $|\rho(G)| \leq 7.^1$
- If $|\rho(G)| = 7$, then for some integer $f \ge 2$, $G \cong PSL_2(2^f) \times R(G)$, where $|\pi(2^f \pm 1)| = 1, 2$ or $3.^2$

• If
$$\Delta(G)$$
 is K_5 -free, then $|\rho(G)| \le 9.^3$

- Z. Akhlaghi, H.P. Tong-Viet, Finite groups with K₄-free prime graphs, Algebr. Represent. Theory, 18(1) (2015) 235-256.
- [2] M. Ebrahimi, K₄-free character graphs with seven vertices, comm. Algebra, 48(3) (2020) 1001-1010.
- [3] Z. Akhlaghi, K. Khedri, B. Taeri, Finite groups with K₅-free prime graphs, Commun. Algebra, 47(7) (2019) 2577-2603.

> Mahdi Ebrahimi

- If for some integer n ≥ 4, Γ is a K_n-free graph whose complement has an odd cycle of length at least 2n - 5, then we say that Γ is an n-exact graph.
- A planar graph whose complement has a cycle of length 5 is 5-exact.
- A tree with 2n + 1 leaves is (n + 3)-exact, where *n* is a positive integer.
- *K*₄-free graphs with non-bipartite complement are 4-exact.

> Mahdi Ebrahimi

School of Mathematics, Institute for Research in Fundamental Sciences (IPM) Let G be a finite group, and $n \ge 4$ be an integer.

- If $\Delta(G)$ is an *n*-exact graph, then $|\rho(G)| \leqslant 2n 1.^1$
- If $|\rho(G)| = 2n 1$, then for some integer $\alpha \ge 2$, $G \cong PSL_2(2^{\alpha}) \times R(G)$, where $|\pi(2^{\alpha} \pm 1)| = n - 3, n - 2$ or n - 1. Also

i) If $|\pi(2^{\alpha} \pm 1)| = n - 3$, then for some disconnected groups A and B of disconnected Types 1 or 4, $R(G) \cong A \times B$, $|\rho(A)| = |\rho(B)| = 2$ and $\rho(G) = \pi(S) \uplus \rho(A) \uplus \rho(B)$. ii) If $|\pi(2^{\alpha} \pm 1)| = n - 2$, then R(G) is a disconnected group of disconnected Type 1 or 4, $|\rho(R(G))| = 2$ and $\rho(G) = \pi(S) \uplus \rho(R(G))$. iii) If $|\pi(2^{\alpha} \pm 1)| = n - 1$, then R(G) is abelian and $\rho(G) = \pi(S)$. **Regular character graphs**

- For some positive integer *n*, the complement of the disjoint union of *n* copies of *K*₂ is called the cocktail party graph cp(*n*).
- (Conjecture)¹ Let G be a group. If Δ(G) is k-regular, for some integer k ≥ 2, then Δ(G) is either a complete graph of order k + 1 or a cocktail party graph of order k + 2.
- $\Delta(G)$ is 3-regular if and only if $\Delta(G) \cong K_4$.¹

[1] H.P. Tong-Viet, Finite groups whose prime graphs are regular, J. Algebra, 397 (2014) 18-31.

Some properties of character graphs

> Mahdi Ebrahimi

> Mahdi Ebrahimi

- For a solvable group G, if Δ(G) is regular with n vertices, then Δ(G) is either complete or (n − 2)-regular.¹
- A regular character-graph $\Delta(G)$ with odd order, of a group G, is a complete graph.²
- If Δ(G) is a k-regular character-graph whose eigenvalues are in the interval [−2,∞). Then the conjecture is true.³
- [1] C.P. Morresi Zuccari, Regular character degree graphs, J. Algebra, 411 (2014) 215-224.
- [2] Z. Sayanjali, Z. Akhlagi, and B. Khosravi, On the regularity of character degree graphs, Bull. Aust. Math. Soc., 100(3) (2019) 428-433.
- [3] M. Ebrahimi, M. Khatami, Z. Mirzaei, Regular character-graphs whose eigenvalues are greater than or equal to -2, Submitted.

> Mahdi Ebrahimi

