Finite groups and orders of their elements

Andrey V. Vasil'ev

Sobolev Institute of Mathematics and Novosibirsk State University
14th Iranian Int'| Group Theory Conference, 2022

The spectrum and prime graph

Let G be a finite group. We work with the following objects:

- $\pi(G)$, the set of prime divisors of the order of G
- $\omega(G)$, the spectrum, the set of element orders of G
- $\mu(G)$, the set of maximal under divisibility elements of $\omega(G)$
- $G K(G)$, the prime graph (or Gruenberg-Kegel graph) of G : the vertex set of this graph is $\pi(G)$ and $p, q \in \pi(G)$ are adjacent iff $p \neq q$ and $p q \in \omega(G)$.

Example: $L=U_{4}(5)=P S U_{4}(5)$

$$
\begin{align*}
& \pi(L)=\{2,3,5,7,13\} \\
& \omega(L)=\text { divisors of } \mu(L) \tag{L}\\
& \mu(L)=\{24,52,60,63\}
\end{align*}
$$

Independence numbers of a prime graph

- $s(G)$, the number of connected components of $G K(G)$
- $t(G)$, the independence number of $G K(G)$, the maximal number of pairwise nonadjacent vertices of $G K(G)$
- $t(r, G)$, the r-independence number of $G K(G)$, the maximal number of pairwise nonadjacent vertices of $G K(G)$ including $r \in \pi(G)$.

Example: $L=U_{4}(5)=P S U_{4}(5)$

$$
\begin{align*}
& \pi(L)=\{2,3,5,7,13\} \\
& \mu(L)=\{24,52,60,63\} \tag{L}\\
& s(L)=1, t(L)=3, t(2, L)=2
\end{align*}
$$

- $s(G)$, the number of connected components of $G K(G)$
- $t(G)$, the independence number of $G K(G)$, the maximal number of pairwise nonadjacent vertices of $G K(G)$
- $t(r, G)$, the r-independence number of $G K(G)$, the maximal number of pairwise nonadjacent vertices of $G K(G)$ including $r \in \pi(G)$.

Higman (1957): $t(G)>2 \Rightarrow G$ is nonsolvable.

Gruenberg and Kegel (Williams, 1981): $s(G)>1 \Rightarrow \operatorname{ncf}(G) \leq 1$.

Vasil'ev (2005): $t(2, G)>1 \Rightarrow \operatorname{ncf}(G) \leq 1$.

- $\operatorname{ncf}(G)$, the number of nonabelian composition factors of G.

Spectra and prime graphs of simple groups

For every finite nonabelian simple group L, we know

- $s(L)$ and the components (Williams 1981, Kondrat'ev 1989)
- $G K(L), t(L)$, and $t(2, L)$ (Vasil'ev - Vdovin 2005)
- $\omega(L)$ (... Buturlakin 2018).

Properties of prime graphs of nonabelian simple groups
(1) If L is sporadic or exceptional of Lie type, not $E_{7}(q)$, then $s(L)>1$.
(2) If L is a nonabelian simple group, not alternating, then $t(r, L)>1$ for each $r \in \pi(L)$, in particular, $t(2, L)>1$.
(3) If L is a nonabelian simple group, then either $s(L)>1$, or $t(L)>2$, or $L=A_{10}$.

Isospectral groups

- Groups G and H are isospectral if $\omega(G)=\omega(H)$
- $h(G)$, the number of groups isospectral to G.

Theorem (Shi and Mazurov, 1998. . . 2012)
(1) If G has a normal elementary abelian subgroup $N \neq 1$, then $\omega(G)=\omega(N \rtimes G)=\omega(N \rtimes(N \rtimes G))=\ldots$, so $h(G)=\infty$.
(2) If $h(G)=\infty$, then there is a group H with $\omega(H)=\omega(G)$
having a nontrivial normal elementary abelian subgroup.

Isospectral groups

- Groups G and H are isospectral if $\omega(G)=\omega(H)$
- $h(G)$, the number of groups isospectral to G.

Theorem (Shi and Mazurov, 1998. . . 2012)
(1) If G has a normal elementary abelian subgroup $N \neq 1$, then $\omega(G)=\omega(N \rtimes G)=\omega(N \rtimes(N \rtimes G))=\ldots$, so $h(G)=\infty$.
(2) If $h(G)=\infty$, then there is a group H with $\omega(H)=\omega(G)$ having a nontrivial normal elementary abelian subgroup.

Let G be a group isospectral to some nonabelian simple group L. What can we say about the structure of G ?

R M. A. Grechkoseeva, V. D. Mazurov, W. Shi, A. V. Vasil'ev, and N. Yang, Finite groups isospectral to simple groups, accepted to Comm. Math. Stat.; arXiv:2111.15198 [math.GR].

General Structure of a Group Isospectral to Simple

 L is nonabelian simple and G is a group with $\omega(G)=\omega(L)$.Williams (+ Gruenber - Kegel's theorem) 1981, Kondrat'ev 1989, Vasil'ev and Vasil'ev - Vdovin 2005, Gorshkov 2012:
$\operatorname{ncf}(G) \leq 1$.

General Structure of a Group Isospectral to Simple

 L is nonabelian simple and G is a group with $\omega(G)=\omega(L)$.Williams (+ Gruenber - Kegel's theorem) 1981, Kondrat'ev 1989, Vasil'ev and Vasil'ev - Vdovin 2005, Gorshkov 2012: $\operatorname{ncf}(G) \leq 1$.

Theorem (Lucido and Moghaddamfar 2004) If G is solvable, then $L \in\left\{L_{3}(3), U_{3}(3), S_{4}(3), A_{10}\right\}$.

Theorem (Staroletov 2008)
If $\omega(G)=\omega\left(A_{10}\right)$, then G is not solvable.
Mazurov $(1998,2002)$ and Zavarnitsine (2010) found solvable groups isospectral to $L_{3}(3), U_{3}(3)$, and $S_{4}(3)$ respectively.

If $L \neq L_{3}(3), U_{3}(3), S_{4}(3)$, then $\operatorname{ncf}(G)=1$.
L is nonabelian simple, G is nonsolvable and $\omega(G)=\omega(L)$

$$
\begin{equation*}
1 \leq K<H \leq G, \tag{*}
\end{equation*}
$$

K is the solvable radical, $H / K \simeq S$ is simple, $G / H \leq \operatorname{Out}(S)$.

Theorem (Yang, Grechkoseeva, Vasil'ev, 2020)
If $L \neq A_{10}$ is nonabelian simple, G is nonsolvable and $\omega(G)=\omega(L)$, then the solvable radical K of G is nilpotent.

Mazurov (1998) showed that A_{10} is isospectral to a group of the form $\left(7^{4} \times 3^{12}\right):\left(2 . S_{5}\right)$, the solvable radical here is Frobenius.

Theorem (Yang, Grechkoseeva, Vasil'ev, 2020)
If $L \neq A_{10}$ is nonabelian simple, G is nonsolvable and $\omega(G)=\omega(L)$, then the solvable radical K of G is nilpotent.

Mazurov (1998) showed that A_{10} is isospectral to a group of the form $\left(7^{4} \times 3^{12}\right):\left(2 . S_{5}\right)$, the solvable radical here is Frobenius.
We have $1 \leq K<H \leq G \quad(*)$. The quotient $G / H \leq \operatorname{Out}(S)$, so it is a solvable. Can one say more?

Theorem (Yang, Grechkoseeva, Vasil'ev, 2020)
If $L \neq A_{10}$ is nonabelian simple, G is nonsolvable and $\omega(G)=\omega(L)$, then the solvable radical K of G is nilpotent.

Mazurov (1998) showed that A_{10} is isospectral to a group of the form $\left(7^{4} \times 3^{12}\right):\left(2 . S_{5}\right)$, the solvable radical here is Frobenius.
We have $1 \leq K<H \leq G \quad(*)$. The quotient $G / H \leq \operatorname{Out}(S)$, so it is a solvable. Can one say more?

Theorem (Grechkoseeva and Vasil'ev, 2022)

If L is nonabelian simple, G is nonsolvable, $\omega(G)=\omega(L)$, and H as in (*), then G / H is cyclic.

Theorem (Yang, Grechkoseeva, Vasil'ev, 2020)
If $L \neq A_{10}$ is nonabelian simple, G is nonsolvable and $\omega(G)=\omega(L)$, then the solvable radical K of G is nilpotent.

Mazurov (1998) showed that A_{10} is isospectral to a group of the form $\left(7^{4} \times 3^{12}\right):\left(2 . S_{5}\right)$, the solvable radical here is Frobenius.
We have $1 \leq K<H \leq G \quad(*)$. The quotient $G / H \leq \operatorname{Out}(S)$, so it is a solvable. Can one say more?

Theorem (Grechkoseeva and Vasil'ev, 2022)

If L is nonabelian simple, G is nonsolvable, $\omega(G)=\omega(L)$, and H as in $(*)$, then G / H is cyclic.

Theorem (Grechkoseeva and Vasil'ev 2022)

Suppose that a finite group G has a normal series (*), the solvable radical K is nilpotent, $S=H / K$ is a finite simple group of Lie type, $G / K \leq$ Aut S. If G / H is not cyclic, then some $r \in \pi(G / H)$ is adjacent to all other primes in $\operatorname{GK}(G)$.

Finite groups isospectral to simple

Main Theorem (current version)
Suppose that L is one of the following simple groups:

- sporadic groups, not J_{2}
- alternating groups, not A_{6}, A_{10}
- exceptional groups of Lie type, not ${ }^{3} D_{4}(2)$
- classical groups of dimension $n \geq 37$.

If $\omega(G)=\omega(L)$, then $L \leq G \leq$ Aut L; all such groups G are known.

Finite groups isospectral to simple

Main Theorem (current version)

Suppose that L is one of the following simple groups:

- sporadic groups, not J_{2}
- alternating groups, not A_{6}, A_{10}
- exceptional groups of Lie type, not ${ }^{3} D_{4}(2)$
- classical groups of dimension $n \geq 37$.

If $\omega(G)=\omega(L)$, then $L \leq G \leq$ Aut L; all such groups G are known.

In short, "almost all simple groups are almost recognizable".

Finite groups isospectral to simple

Main Theorem (current version)

Suppose that L is one of the following simple groups:

- sporadic groups, not J_{2}
- alternating groups, not A_{6}, A_{10}
- exceptional groups of Lie type, not ${ }^{3} D_{4}(2)$
- classical groups of dimension $n \geq 37$.

If $\omega(G)=\omega(L)$, then $L \leq G \leq$ Aut L; all such groups G are known.

In short, "almost all simple groups are almost recognizable". In details, see the survey [GMSVY22, Theorem 1 and Tables 1-9].

Main Theorem (dream version)
Suppose that L is one of the following simple groups:

- sporadic groups, not J_{2}
- alternating groups, not A_{6}, A_{10}
- exceptional groups of Lie type, not ${ }^{3} D_{4}(2)$
- $L_{n}(q), U_{n}(q)$ with $n \geqslant 2$, not $L_{2}(9), L_{3}(3), U_{3}(q)^{*}, U_{4}(2), U_{5}(2)$
- $S_{2 n}(q), O_{2 n+1}(q)$ with $n \geqslant 2$, not $S_{4}(q)^{* *}, S_{8}(q)^{* * *}, O_{9}(q)$
- $\mathrm{O}_{2 n}^{+}(q)$ with $n \geqslant 4$
- $O_{2 n}^{-}(q)$ with $n \geqslant 4$.

Then $h(L)<\infty$. Furthermore, if $\omega(G)=\omega(L)$, then either $h(L)=2$ and $L, G \in\left\{S_{6}(2), O_{8}^{+}(2)\right\},\left\{O_{7}(3), O_{8}^{+}(3)\right\}$, or
$L \leq G \leq$ Aut L, and all such groups G are known.

Main Theorem (dream version)

Suppose that L is one of the following simple groups:

- sporadic groups, not J_{2}
- alternating groups, not A_{6}, A_{10}
- exceptional groups of Lie type, not ${ }^{3} D_{4}(2)$
- $L_{n}(q), U_{n}(q)$ with $n \geqslant 2$, not $L_{2}(9), L_{3}(3), U_{3}(q)^{*}, U_{4}(2), U_{5}(2)$
- $S_{2 n}(q), O_{2 n+1}(q)$ with $n \geqslant 2$, not $S_{4}(q)^{* *}, S_{8}(q)^{* * *}, O_{9}(q)$
- $O_{2 n}^{+}(q)$ with $n \geqslant 4$
- $\mathrm{O}_{2 n}^{-}(q)$ with $n \geqslant 4$.

Then $h(L)<\infty$. Furthermore, if $\omega(G)=\omega(L)$, then either $h(L)=2$ and $L, G \in\left\{S_{6}(2), O_{8}^{+}(2)\right\},\left\{O_{7}(3), O_{8}^{+}(3)\right\}$, or $L \leq G \leq$ Aut L, and all such groups G are known.

* In fact, 'not $U_{3}(q)$, where q is a Mersenne prime such that $q^{2}-q+1$ is prime'. The only known such q are 3 and 7 . ${ }^{* *} h\left(S_{4}(q)\right)=1$ for $q=3^{2 k+1}>3$ and $h\left(S_{4}(q)\right)=\infty$ otherwise. ${ }^{* * *} h\left(S_{8}\left(7^{k}\right)\right)=$? and $h\left(S_{8}(q)\right)=\infty$ otherwise.

How to make a dream come true?

Prove the following conjecture
Let q be odd and L be one of the following simple groups:
(1) $L_{n}(q)$, where $6 \leqslant n \leqslant 26$ and n is not prime;
(2) $U_{n}(q)$, where $5 \leqslant n \leqslant 26$;
(3) $O_{2 n}^{+}(q)$, where $5 \leqslant n \leqslant 18$;
(4) $O_{2 n}^{-}(q)$, where $5 \leqslant n \leqslant 17$ and $n \neq 8,16$;
(5) $S_{2 n}(q)$ and $O_{2 n+1}(q)$, where $5 \leqslant n \leqslant 15$ and $n \neq 8$.

If G is a finite group isospectral to L, then the unique nonabelian composition factor S of G cannot be a group of Lie type in characteristic coprime to q.

Nonsimple groups

If the solvable radical K of G is nontrivial, then $h(G)=\infty$. So if $h(G)<\infty$, then for some nonabelian simple L_{1}, \ldots, L_{k} :
$L_{1} \times L_{2} \times \cdots \times L_{k}=\operatorname{Soc}(G) \leq G \leq \operatorname{Aut}\left(L_{1} \times L_{2} \times \cdots \times L_{k}\right)(* *)$

Nonsimple groups

If the solvable radical K of G is nontrivial, then $h(G)=\infty$.
So if $h(G)<\infty$, then for some nonabelian simple L_{1}, \ldots, L_{k} :

$$
L_{1} \times L_{2} \times \cdots \times L_{k}=\operatorname{Soc}(G) \leq G \leq \operatorname{Aut}\left(L_{1} \times L_{2} \times \cdots \times L_{k}\right)(* *)
$$

If $k=1$, then G is almost simple. See [GMSVY22, Sect. 4.2].

Example

Let q be a power of a prime p, n an odd number such that $n-1$ is not a power of p and $G=P G L_{n}(q)$. Then $\omega(G)=\omega\left(S L_{n}(q)\right)$. In particular, if $(n, q-1) \neq 1$, then $h(G)=\infty$.

Nonsimple groups

If the solvable radical K of G is nontrivial, then $h(G)=\infty$.
So if $h(G)<\infty$, then for some nonabelian simple L_{1}, \ldots, L_{k} :

$$
L_{1} \times L_{2} \times \cdots \times L_{k}=\operatorname{Soc}(G) \leq G \leq \operatorname{Aut}\left(L_{1} \times L_{2} \times \cdots \times L_{k}\right)(* *)
$$

If $k=1$, then G is almost simple. See [GMSVY22, Sect. 4.2].

Example

Let q be a power of a prime p, n an odd number such that $n-1$ is not a power of p and $G=P G L_{n}(q)$. Then $\omega(G)=\omega\left(S L_{n}(q)\right)$. In particular, if $(n, q-1) \neq 1$, then $h(G)=\infty$.

We know $\omega(L)$ for every simple group L (. . Buturlakin 2018).
Dream: $\omega(G)$ for every almost simple group G (close to come true ... Grechkoseeva, Buturlakin).

Groups with nonsimple socle

Is the number k of factors of $\operatorname{Soc}(G)$ in $(* *)$ bounded?

Groups with nonsimple socle

Is the number k of factors of $\operatorname{Soc}(G)$ in $(* *)$ bounded? No!
Theorem (GMSVY, 2022)
There is an infinite sequence of primes $r_{i}, i \in \mathbb{N}$, such that $h\left(G_{k}\right)=1$ for every $k \in \mathbb{N}$, where

$$
G_{k}=\prod_{i=1}^{k} S z\left(2^{r_{i}}\right)
$$

$S z(q)={ }^{2} B_{2}(q), q=2^{2 m+1}>2$ is the simple Suzuki group.

Groups with nonsimple socle

Is the number k of factors of $\operatorname{Soc}(G)$ in $(* *)$ bounded? No!
Theorem (GMSVY, 2022)
There is an infinite sequence of primes $r_{i}, i \in \mathbb{N}$, such that $h\left(G_{k}\right)=1$ for every $k \in \mathbb{N}$, where

$$
G_{k}=\prod_{i=1}^{k} S z\left(2^{r_{i}}\right)
$$

$S z(q)={ }^{2} B_{2}(q), q=2^{2 m+1}>2$ is the simple Suzuki group.
Let $L=L_{1} \simeq \ldots \simeq L_{k}$, so $\operatorname{Soc}(G)=L^{k}$.
If $G=\operatorname{Soc}(G)$, then there is k (depends on L) s.t. $h(G)=\infty$.
If $k \geq|\mu(L)|$, then $\mu(G)=\{m\}$, so $\omega(G)=\omega\left(\mathbb{Z}_{m}\right)$.

Groups with nonsimple socle

Is the number k of factors of $\operatorname{Soc}(G)$ in $(* *)$ bounded? No!
Theorem (GMSVY, 2022)
There is an infinite sequence of primes $r_{i}, i \in \mathbb{N}$, such that $h\left(G_{k}\right)=1$ for every $k \in \mathbb{N}$, where

$$
G_{k}=\prod_{i=1}^{k} S z\left(2^{r_{i}}\right)
$$

$S z(q)={ }^{2} B_{2}(q), q=2^{2 m+1}>2$ is the simple Suzuki group. Let $L=L_{1} \simeq \ldots \simeq L_{k}$, so $\operatorname{Soc}(G)=L^{k}$.
If $G=\operatorname{Soc}(G)$, then there is k (depends on L) s.t. $h(G)=\infty$.
If $k \geq|\mu(L)|$, then $\mu(G)=\{m\}$, so $\omega(G)=\omega\left(\mathbb{Z}_{m}\right)$.
Mazurov (1997): If $\left.G=S z\left(2^{7}\right)\right\}\left(\mathbb{Z}_{23}: \mathbb{Z}_{11}\right)$, then $h(G)=1$, though $\left|\mu\left(S z\left(2^{7}\right)\right)\right|=4$ and $k=23$.

Squares of simple groups

All known results

- $h\left(S z\left(2^{7}\right) \times S z\left(2^{7}\right)\right)=1$ (Mazurov 1997)
- $h\left(J_{4} \times J_{4}\right)=1$ (Gorshkov and Maslova 2020).

The reason for the lack of results is that the standard methods of proving the nonsolvability of groups isospectral to a simple group are based on properties of its prime graph. However, $G K(L \times L)$ is a complete graph for any group L.

Squares of simple groups

All known results

- $h\left(S z\left(2^{7}\right) \times S z\left(2^{7}\right)\right)=1$ (Mazurov 1997)
- $h\left(J_{4} \times J_{4}\right)=1$ (Gorshkov and Maslova 2020).

The reason for the lack of results is that the standard methods of proving the nonsolvability of groups isospectral to a simple group are based on properties of its prime graph. However, $G K(L \times L)$ is a complete graph for any group L.

Theorem (Wang, Vasil'ev, Grechkoseeva, Zhurtov 2022)
Let $L=S z(q), q \geq 8$, and $\omega(G)=\omega(L \times L)$, then $G \simeq L \times L$.

Squares of simple groups

All known results

- $h\left(S z\left(2^{7}\right) \times S z\left(2^{7}\right)\right)=1$ (Mazurov 1997)
- $h\left(J_{4} \times J_{4}\right)=1$ (Gorshkov and Maslova 2020).

The reason for the lack of results is that the standard methods of proving the nonsolvability of groups isospectral to a simple group are based on properties of its prime graph. However, $G K(L \times L)$ is a complete graph for any group L.

Theorem (Wang, Vasil'ev, Grechkoseeva, Zhurtov 2022) Let $L=S z(q), q \geq 8$, and $\omega(G)=\omega(L \times L)$, then $G \simeq L \times L$.

Observe that $t(L)=4$. So we apply

Theorem

Let L be a group with $t(L) \geqslant 4$. If $\omega(G)=\omega(L \times L)$, then G is nonsolvable.

Sufficient criterion of nonsolvability

Theorem (Wang, Vasil'ev, Grechkoseeva, Zhurtov 2022)
Suppose $\pi(G) \supseteq \sigma(G)=\left\{p_{i} \mid i \in I\right\},|I| \geqslant 4$, satisfying:
(1) $p_{i} p_{j} \in \omega(G)$ for all distinct $i, j \in I$;
(2) $p_{i} p_{j} p_{k} \notin \omega(G)$ for all pairwise distinct $i, j, k \in I$.

Then G is nonsolvable.

Sufficient criterion of nonsolvability

Theorem (Wang, Vasil'ev, Grechkoseeva, Zhurtov 2022)
Suppose $\pi(G) \supseteq \sigma(G)=\left\{p_{i} \mid i \in I\right\},|I| \geqslant 4$, satisfying:
(1) $p_{i} p_{j} \in \omega(G)$ for all distinct $i, j \in I$;
(2) $p_{i} p_{j} p_{k} \notin \omega(G)$ for all pairwise distinct $i, j, k \in I$.

Then G is nonsolvable.
(1) If $|I|=3$, then Theorem is wrong: $G=D_{6} \times D_{10}$.
(2) If $||\mid \geq 6$, then Theorem is true even without Condition 1:
(J. Zhang 1995) if G is solvable, then

$$
|\pi(G)| \leq \frac{\alpha(G)(\alpha(G)+3)}{2} \text {, where } \alpha(G)=\max _{1 \neq x \in G}|\pi(|x|)| \text {. }
$$

Sufficient criterion of nonsolvability

Theorem (Wang, Vasil'ev, Grechkoseeva, Zhurtov 2022)

Suppose $\pi(G) \supseteq \sigma(G)=\left\{p_{i} \mid i \in I\right\},|I| \geqslant 4$, satisfying:
(1) $p_{i} p_{j} \in \omega(G)$ for all distinct $i, j \in I$;
(2) $p_{i} p_{j} p_{k} \notin \omega(G)$ for all pairwise distinct $i, j, k \in I$.

Then G is nonsolvable.
(1) If $|I|=3$, then Theorem is wrong: $G=D_{6} \times D_{10}$.
(2) If $\mid \| \geq 6$, then Theorem is true even without Condition 1:
(J. Zhang 1995) if G is solvable, then

$$
|\pi(G)| \leq \frac{\alpha(G)(\alpha(G)+3)}{2} \text {, where } \alpha(G)=\max _{1 \neq x \in G}|\pi(|x|)| \text {. }
$$

(3) Theorem is true if p_{i} does not also divide $p_{j}-1$ for all $i, j \in I$ (Gorshkov and Maslova 2020).

Open problems

(1) Is it true that for every n there is a group G with $h(G)=1$ that is the nth direct power of a nonabelian simple group?
(2) Is it true that there is a nonabelian simple group L such that for every n, there is a group G with $h(G)=1$ whose socle is the k th power of L for some $k \geq n$?
(3) Does there exist a group G with $h(G)=1$ such that $G / \operatorname{Soc}(G)$ is not solvable?

Open problems

(1) Is it true that for every n there is a group G with $h(G)=1$ that is the nth direct power of a nonabelian simple group?
(2) Is it true that there is a nonabelian simple group L such that for every n, there is a group G with $h(G)=1$ whose socle is the k th power of L for some $k \geq n$?
(3) Does there exist a group G with $h(G)=1$ such that $G / \operatorname{Soc}(G)$ is not solvable?

These and other intriguing problems you can find in the new 20th edition of the Kourovka notebook, which will appear very soon at https://kourovka-notebook.org/.
You are also welcomed to the Kourovka Forum, an additional feature of the Kourovka Notebook, the series of online seminars. This spring the invited speakers are A. Lubotzky, D. Segal, R. Solomon, L. Pyber, B. Oliver, and Ch. Parker. See details at http://mca.nsu.ru/kourovkaforum/.

