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The commuting graph

Let A be the collection of finite abelian groups.

Let G be a finite non-abelian group with centre Z (G ).

Let ΛA(G ) be the graph with vertex set G , where

x ∼ y ⇐⇒ 〈x , y〉 ∈ A ⇐⇒ xy = yx

Let
UA(G ) = {x ∈ G : x ∼ y for all y ∈ G} = Z (G )

be the set of universal vertices in ΛA(G ).

Definition. Let Γ(G ) be the graph with vertices G \ Z (G ), where
x ∼ y if and only if xy = yx .

This is the commuting graph of G .
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Connectedness

Example. Let G = Sp, where p > 3 is a prime.

If x ∈ G is a p-cycle, then CG (x) = 〈x〉 and thus Γ(G ) is disconnected.

Theorem (Iranmanesh & Jafarzadeh, 2008). If n > 3, then Γ(Sn) is
connected iff n and n − 1 are composite, in which case diam(Γ(Sn)) 6 5.

Theorem (Giudici & Parker, 2013). For any d ∈ N, there exists a
2-group G such that Γ(G ) is connected and diam(Γ(G )) > d .

Theorem (Morgan & Parker, 2013).

If Z (G ) = 1, then diam(Γ(G )) 6 10.

� It is not known if the upper bound of 10 is best possible, but there
are examples with diam(Γ(G )) = 8.

� Parker, 2013: If G is soluble and Z (G ) = 1, then diam(Γ(G )) 6 8.
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Example: G = A5
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Commuting graph of A5
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Soluble graph of A5
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Main results

Let G be a finite insoluble group and let dS(G ) be the maximal diameter
of a connected component of the soluble graph ΓS(G ).

Theorem (B, Lucchini & Nemmi, 2021).

ΓS(G ) is connected and dS(G ) 6 5.

� There are groups with dS(G ) = 4, e.g.

A11, A12, PSL5(2), PSU5(2), M12, M22, M23, M24, HS, J3, . . .

� M12 is the smallest group with dS(G ) > 4.

� dS(G ) > 4 =⇒ G is almost simple (i.e. T P G 6 Aut(T ))

� There are infinitely many simple groups with dS(G ) = 2.
e.g. G = PSL2(q) with q > 4 even.
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Earlier work

Theorem (Akbari, Lewis, Mirzajani & Moghaddamfar, 2020).

ΓS(G ) is connected and dS(G ) 6 11.

Question (ALMM): Are there any groups with dS(G ) > 4?

Suppose R(G ) = 1 and let Inv(G ) be the set of involutions in G .

ALMM: d(x , Inv(G )) 6 5 for all 1 6= x ∈ G , so dS(G ) 6 11.

The vertices of the soluble prime graph Πs(G ) are the prime divisors of
|G |, with p ∼ q iff G has a soluble subgroup of order divisible by pq.

The following result is a key ingredient in ALMM (it relies on CFSG):

Hagie (2000): Πs(G ) is connected and d(2, p) 6 3 for any prime p.
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Involution distance

Our approach yields the following result.

Theorem. If R(G ) = 1 and 1 6= x ∈ G , then either

� d(x , Inv(G )) 6 2, or

� G = M23, |x | = 23 and d(x , Inv(G )) = 3.

Suppose G = M23 and |x | = 23. Let Br (x) be the ball of radius r at x .

� H = NG (〈x〉) = C23:C11 is the unique maximal subgroup of G
containing x , so B1(x) = H# = {y ∈ H : y 6= 1}.

� Suppose y ∈ B1(x) has order 11 and let J be a maximal subgroup of
G containing y . Then J = C23:C11, M11 or M22.

� If J = M11 or M22, then NJ(〈y〉) = C11:C5 is the only maximal soluble
subgroup of J containing y , so {|z | : z ∈ B2(x)} = {5, 11, 23}.
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First reductions

Lemma. Let G be a finite insoluble group. Then

� ΓS(G ) is connected iff ΓS(G/R(G )) is connected.

� In addition, dS(G ) = dS(G/R(G )).

Proof. 〈x , y〉 6 G is soluble iff 〈xR(G ), yR(G )〉 6 G/R(G ) is soluble.

Theorem. Suppose G is insoluble, but not almost simple.

Then ΓS(G ) is connected and dS(G ) 6 3.

� We may assume R(G ) = 1. Suppose soc(G ) = N1 × · · · × Nk , where
k > 2 and each Ni is a non-abelian minimal normal subgroup of G .

� If 1 6= x , y ∈ G , then there exist nontrivial s ∈ N1, t ∈ N2 such that
[x , s] = [y , t] = 1, so x ∼ s ∼ t ∼ y is a path in ΓS(G ).

� This leaves the monolithic case (soc(G ) = T × · · · × T , T simple).
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Symmetric groups

Theorem. Let G = Sn with n > 6.

Then dS(G ) = 3 and d(x , Inv(G )) 6 1 for all 1 6= x ∈ G .

� Each x ∈ G is real, so |NG (〈x〉)| is even and thus dS(G ) 6 3.

� Suppose n > 7 is a prime. Let x ∈ G be an n-cycle.

Then H = NG (〈x〉) = Cn:Cn−1 is the unique maximal soluble
subgroup of G containing x , so

B1(x) = {y ∈ G# : 〈x , y〉 is soluble} = H#.

By B, Guralnick & Saxl (2011), there exists g ∈ G with
H ∩ Hg = 1, hence B1(x) ∩ B1(xg ) = ∅ and thus d(x , xg ) > 3.
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Alternating groups

Theorem. Let G = An with n > 6.

� We have 3 6 dS(G ) 6 5.

� dS(G ) > 4 only if n ∈ {p, p + 1} for a prime p ≡ 3 (mod 4).

� dS(G ) > 4 if n = 2p + 1 and p > 5 are primes.

Suppose n = 2p + 1 and p > 5 are primes. We use a counting argument
to prove the existence of n-cycles x , y ∈ G with d(x , y) > 4.

Let A be the set of n-cycles in G and fix x ∈ A. It suffices to show that

|A ∩ B3(x)| = 1 + α1 + α2 + α3 < |A|,

where αk = |{y ∈ A : d(x , y) = k}|.
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Sporadic groups

Theorem. Let G be an almost simple sporadic group with socle T .

� We have 3 6 dS(G ) 6 5.

� dS(G ) > 4 only if G = T .

� dS(G ) = 4 if G = M12, M22, M23, M24, HS or J3.

� dS(G ) > 4 if G = Co2, Co3, McL or B.

The proof relies heavily on computational methods (using Magma).

e.g. If G = HS and |x | = 11, then H = NG (〈x〉) = C11:C5, B1(x) = H#.

By random search, there exists g ∈ G such that B1(x) ∩ B1(xg ) = ∅ and
〈a, b〉 6∈ S for all a ∈ B1(x), b ∈ B1(xg ), so d(x , xg ) > 4.
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Two-dimensional linear groups

The groups with socle PSL2(q) require special attention.

Theorem. If G has socle PSL2(q), then

dS(G ) =

{
2 if PGL2(q) 6 G or q ∈ {5, 7}
3 otherwise.

Example. Suppose G = PGL2(q). If A = D2(q+1) and B = [q]:Cq−1 then

G =
⋃
g∈G

Ag ∪
⋃
h∈G

Bh.

We have |B|2 > |G |, |A||B| > |G | and one checks that A ∩ Ag 6= 1 for all
g ∈ G . So any two subgroups in the union intersect nontrivially.

Therefore, B1(x) ∩ B1(y) 6= ∅ for all 1 6= x , y ∈ G and thus dS(G ) = 2.
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Groups of Lie type

Let G be an almost simple group of Lie type over Fq with socle T . Let
B = NG (P) be a Borel subgroup of G .

Lemma. |B| is odd ⇐⇒ T = PSL2(q) and q ≡ 3 (mod 4).

Proposition. If |x | = r is an odd prime, then either d(x , Inv(G )) = 1, or
(T , r) ∈ L is known (e.g. T = E6(2) and r = 73).

Theorem. d(x , Inv(G )) 6 2 for all x ∈ G#, so dS(G ) 6 5.

Sketch. Let x ∈ G# with z = xm of prime order r , so x ∼ z and by the
proposition we may assume r is odd and (T , r) ∈ L.

Here NG (〈z〉) is soluble and contains x and an element y of prime order s
with (T , s) 6∈ L. So x ∼ y and d(y , Inv(G )) = 1 by the proposition.

16



Groups of Lie type

Let G be an almost simple group of Lie type over Fq with socle T . Let
B = NG (P) be a Borel subgroup of G .

Lemma. |B| is odd ⇐⇒ T = PSL2(q) and q ≡ 3 (mod 4).

Proposition. If |x | = r is an odd prime, then either d(x , Inv(G )) = 1, or
(T , r) ∈ L is known (e.g. T = E6(2) and r = 73).

Theorem. d(x , Inv(G )) 6 2 for all x ∈ G#, so dS(G ) 6 5.

Sketch. Let x ∈ G# with z = xm of prime order r , so x ∼ z and by the
proposition we may assume r is odd and (T , r) ∈ L.

Here NG (〈z〉) is soluble and contains x and an element y of prime order s
with (T , s) 6∈ L. So x ∼ y and d(y , Inv(G )) = 1 by the proposition.

16



Groups of Lie type

Let G be an almost simple group of Lie type over Fq with socle T . Let
B = NG (P) be a Borel subgroup of G .

Lemma. |B| is odd ⇐⇒ T = PSL2(q) and q ≡ 3 (mod 4).

Proposition. If |x | = r is an odd prime, then either d(x , Inv(G )) = 1, or
(T , r) ∈ L is known (e.g. T = E6(2) and r = 73).

Theorem. d(x , Inv(G )) 6 2 for all x ∈ G#, so dS(G ) 6 5.

Sketch. Let x ∈ G# with z = xm of prime order r , so x ∼ z and by the
proposition we may assume r is odd and (T , r) ∈ L.

Here NG (〈z〉) is soluble and contains x and an element y of prime order s
with (T , s) 6∈ L. So x ∼ y and d(y , Inv(G )) = 1 by the proposition.

16



Groups of Lie type

Let G be an almost simple group of Lie type over Fq with socle T . Let
B = NG (P) be a Borel subgroup of G .

Lemma. |B| is odd ⇐⇒ T = PSL2(q) and q ≡ 3 (mod 4).

Proposition. If |x | = r is an odd prime, then either d(x , Inv(G )) = 1, or
(T , r) ∈ L is known (e.g. T = E6(2) and r = 73).

Theorem. d(x , Inv(G )) 6 2 for all x ∈ G#, so dS(G ) 6 5.

Sketch. Let x ∈ G# with z = xm of prime order r , so x ∼ z and by the
proposition we may assume r is odd and (T , r) ∈ L.

Here NG (〈z〉) is soluble and contains x and an element y of prime order s
with (T , s) 6∈ L. So x ∼ y and d(y , Inv(G )) = 1 by the proposition.

16



Groups of Lie type

Let G be an almost simple group of Lie type over Fq with socle T . Let
B = NG (P) be a Borel subgroup of G .

Lemma. |B| is odd ⇐⇒ T = PSL2(q) and q ≡ 3 (mod 4).

Proposition. If |x | = r is an odd prime, then either d(x , Inv(G )) = 1, or
(T , r) ∈ L is known (e.g. T = E6(2) and r = 73).

Theorem. d(x , Inv(G )) 6 2 for all x ∈ G#, so dS(G ) 6 5.

Sketch. Let x ∈ G# with z = xm of prime order r , so x ∼ z and by the
proposition we may assume r is odd and (T , r) ∈ L.

Here NG (〈z〉) is soluble and contains x and an element y of prime order s
with (T , s) 6∈ L. So x ∼ y and d(y , Inv(G )) = 1 by the proposition.

16



Groups of Lie type

Let G be an almost simple group of Lie type over Fq with socle T . Let
B = NG (P) be a Borel subgroup of G .

Lemma. |B| is odd ⇐⇒ T = PSL2(q) and q ≡ 3 (mod 4).

Proposition. If |x | = r is an odd prime, then either d(x , Inv(G )) = 1, or
(T , r) ∈ L is known (e.g. T = E6(2) and r = 73).

Theorem. d(x , Inv(G )) 6 2 for all x ∈ G#, so dS(G ) 6 5.

Sketch. Let x ∈ G# with z = xm of prime order r , so x ∼ z and by the
proposition we may assume r is odd and (T , r) ∈ L.

Here NG (〈z〉) is soluble and contains x and an element y of prime order s
with (T , s) 6∈ L. So x ∼ y and d(y , Inv(G )) = 1 by the proposition.

16



Some open problems

Question. Is there a finite group with dS(G ) = 5?

Are there infinitely many with dS(G ) > 4?

We know that the answer to the latter question is yes if there are infinitely
many Sophie Germain primes...

Conjecture. If p > 11 is a prime, p ≡ 3 (mod 4), then dS(Ap) > 4.

Question. dS(G ) > 4 =⇒ G is simple?

Question. Can we determine the simple groups with dS(G ) = 2?

Here we can prove that G has to be a classical group. The only known
examples are PSL2(q) with q > 4 even, PSL3(2) and PSU4(2).
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Generalisations

Let F be a family of groups (e.g. abelian, soluble, nilpotent, metacyclic,
metabelian, etc.) and fix a finite group G 6∈ F .

Let ΛF (G ) be the graph with vertex set G , where x ∼ y iff 〈x , y〉 ∈ F .

Let
UF (G ) = {x ∈ G : 〈x , y〉 ∈ F for all y ∈ G}

be the set of universal vertices in ΛF (G ) and let ΓF (G ) be the graph with
vertices G \ UF (G ), where x ∼ y iff 〈x , y〉 ∈ F .

Some immediate questions:

� Can we identify UF (G )?

� If it is a subgroup, how are ΓF (G ) and ΓF (G/UF (G )) related?
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Final remarks

Let N be the family of nilpotent groups and fix a finite group G 6∈ N .

� UN (G ) = Z∞(G ), so diam(ΓN (G )) = diam(ΓN (G/UN (G ))).

� If Z∞(G ) = 1, then ΓN (G ) and Γ(G ) have the same connected
components, so diam(ΓN (G )) 6 10 by Morgan & Parker (2013).

Fix a family F as above.

� Q1. Is there an absolute constant c such that diam(ΓF (G )) 6 c for
every finite group G 6∈ F?

� Q2. And if we only consider groups with UF (G ) = 1?

e.g. if F = A is the collection of abelian groups, then the answers are no
to Q1, but yes to Q2 (with c = 10).

e.g. if F = S or N , then yes to Q1 (with c = 5 or 10, respectively).
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