The soluble graph of a finite group

Tim Burness

14th Iranian International Group Theory Conference

February 3rd 2022

The commuting graph

Let \mathcal{A} be the collection of finite **abelian** groups.

Let G be a finite **non-abelian** group with centre Z(G).

The commuting graph

Let \mathcal{A} be the collection of finite **abelian** groups.

Let G be a finite **non-abelian** group with centre Z(G).

Let $\Lambda_{\mathcal{A}}(G)$ be the graph with vertex set G, where

$$x \sim y \iff \langle x, y \rangle \in \mathcal{A} \iff xy = yx$$

Let

$$\mathcal{U}_{\mathcal{A}}(G) = \{x \in G \ : \ x \sim y \text{ for all } y \in G\} = Z(G)$$

be the set of universal vertices in $\Lambda_{\mathcal{A}}(G)$.

The commuting graph

Let \mathcal{A} be the collection of finite **abelian** groups.

Let G be a finite **non-abelian** group with centre Z(G).

Let $\Lambda_{\mathcal{A}}(G)$ be the graph with vertex set G, where

$$x \sim y \iff \langle x, y \rangle \in \mathcal{A} \iff xy = yx$$

Let

$$\mathcal{U}_{\mathcal{A}}(G) = \{x \in G \ : \ x \sim y \text{ for all } y \in G\} = Z(G)$$

be the set of universal vertices in $\Lambda_{\mathcal{A}}(G)$.

Definition. Let $\Gamma(G)$ be the graph with vertices $G \setminus Z(G)$, where $x \sim y$ if and only if xy = yx.

This is the **commuting graph** of *G*.

Example. Let $G = S_p$, where $p \ge 3$ is a prime.

If $x \in G$ is a *p*-cycle, then $C_G(x) = \langle x \rangle$ and thus $\Gamma(G)$ is disconnected.

Example. Let $G = S_p$, where $p \ge 3$ is a prime.

If $x \in G$ is a *p*-cycle, then $C_G(x) = \langle x \rangle$ and thus $\Gamma(G)$ is disconnected.

Theorem (Iranmanesh & Jafarzadeh, 2008). If $n \ge 3$, then $\Gamma(S_n)$ is connected iff n and n-1 are composite, in which case diam $(\Gamma(S_n)) \le 5$.

Example. Let $G = S_p$, where $p \ge 3$ is a prime.

If $x \in G$ is a *p*-cycle, then $C_G(x) = \langle x \rangle$ and thus $\Gamma(G)$ is disconnected.

Theorem (Iranmanesh & Jafarzadeh, 2008). If $n \ge 3$, then $\Gamma(S_n)$ is connected iff n and n-1 are composite, in which case diam $(\Gamma(S_n)) \le 5$.

Theorem (Giudici & Parker, 2013). For any $d \in \mathbb{N}$, there exists a 2-group G such that $\Gamma(G)$ is connected and diam $(\Gamma(G)) \ge d$.

Example. Let $G = S_p$, where $p \ge 3$ is a prime.

If $x \in G$ is a *p*-cycle, then $C_G(x) = \langle x \rangle$ and thus $\Gamma(G)$ is disconnected.

Theorem (Iranmanesh & Jafarzadeh, 2008). If $n \ge 3$, then $\Gamma(S_n)$ is connected iff n and n-1 are composite, in which case diam $(\Gamma(S_n)) \le 5$.

Theorem (Giudici & Parker, 2013). For any $d \in \mathbb{N}$, there exists a 2-group G such that $\Gamma(G)$ is connected and diam $(\Gamma(G)) \ge d$.

Theorem (Morgan & Parker, 2013). If Z(G) = 1, then diam $(\Gamma(G)) \leq 10$.

Example. Let $G = S_p$, where $p \ge 3$ is a prime.

If $x \in G$ is a *p*-cycle, then $C_G(x) = \langle x \rangle$ and thus $\Gamma(G)$ is disconnected.

Theorem (Iranmanesh & Jafarzadeh, 2008). If $n \ge 3$, then $\Gamma(S_n)$ is connected iff n and n-1 are composite, in which case diam $(\Gamma(S_n)) \le 5$.

Theorem (Giudici & Parker, 2013). For any $d \in \mathbb{N}$, there exists a 2-group G such that $\Gamma(G)$ is connected and diam $(\Gamma(G)) \ge d$.

Theorem (Morgan & Parker, 2013). If Z(G) = 1, then diam $(\Gamma(G)) \leq 10$.

■ It is not known if the upper bound of 10 is best possible, but there are examples with diam($\Gamma(G)$) = 8.

Parker, 2013: If G is soluble and Z(G) = 1, then diam $(\Gamma(G)) \leq 8$.

The soluble graph

Let \mathcal{S} be the collection of finite **soluble** groups.

Let G be a finite **insoluble** group with soluble radical R(G).

Let $\Lambda_{\mathcal{S}}(G)$ be the graph with vertex set G, where $x \sim y$ iff $\langle x, y \rangle \in \mathcal{S}$.

The soluble graph

Let \mathcal{S} be the collection of finite **soluble** groups.

Let G be a finite **insoluble** group with soluble radical R(G).

Let $\Lambda_{\mathcal{S}}(G)$ be the graph with vertex set G, where $x \sim y$ iff $\langle x, y \rangle \in S$. Let $\mathcal{U}_{\mathcal{S}}(G)$ be the set of universal vertices in $\Lambda_{\mathcal{S}}(G)$, so

$$\mathcal{U}_{\mathcal{S}}(G) = \{x \in G \, : \, \langle x, y \rangle \in \mathcal{S} \text{ for all } y \in G\}$$

Theorem (Guralnick et al. 2006). $U_{\mathcal{S}}(G) = R(G)$

The soluble graph

Let \mathcal{S} be the collection of finite **soluble** groups.

Let G be a finite **insoluble** group with soluble radical R(G).

Let $\Lambda_{\mathcal{S}}(G)$ be the graph with vertex set G, where $x \sim y$ iff $\langle x, y \rangle \in \mathcal{S}$.

Let $\mathcal{U}_{\mathcal{S}}(G)$ be the set of universal vertices in $\Lambda_{\mathcal{S}}(G)$, so

$$\mathcal{U}_{\mathcal{S}}(G) = \{x \in G \ : \ \langle x, y \rangle \in \mathcal{S} \text{ for all } y \in G\}$$

Theorem (Guralnick et al. 2006). $U_S(G) = R(G)$

Definition. Let $\Gamma_{\mathcal{S}}(G)$ be the graph with vertices $G \setminus R(G)$, where $x \sim y$ if and only if $\langle x, y \rangle$ is soluble.

This is the **soluble graph** of *G*.

Example: $G = A_5$

Soluble graph of A_5

Let G be a finite insoluble group and let $d_{\mathcal{S}}(G)$ be the maximal diameter of a connected component of the soluble graph $\Gamma_{\mathcal{S}}(G)$.

Let G be a finite insoluble group and let $d_{\mathcal{S}}(G)$ be the maximal diameter of a connected component of the soluble graph $\Gamma_{\mathcal{S}}(G)$.

Theorem (B, Lucchini & Nemmi, 2021).

 $\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leq 5$.

Let G be a finite insoluble group and let $d_{\mathcal{S}}(G)$ be the maximal diameter of a connected component of the soluble graph $\Gamma_{\mathcal{S}}(G)$.

Theorem (B, Lucchini & Nemmi, 2021).

 $\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leq 5$.

• There are groups with $d_{\mathcal{S}}(G) = 4$, e.g.

 $A_{11}, A_{12}, PSL_5(2), PSU_5(2), M_{12}, M_{22}, M_{23}, M_{24}, HS, J_3, \dots$

• M_{12} is the smallest group with $d_{\mathcal{S}}(G) \ge 4$.

Let G be a finite insoluble group and let $d_{\mathcal{S}}(G)$ be the maximal diameter of a connected component of the soluble graph $\Gamma_{\mathcal{S}}(G)$.

Theorem (B, Lucchini & Nemmi, 2021). $\Gamma_{S}(G)$ is connected and $d_{S}(G) \leq 5$.

• There are groups with $d_{\mathcal{S}}(G) = 4$, e.g.

 $A_{11}, A_{12}, PSL_5(2), PSU_5(2), M_{12}, M_{22}, M_{23}, M_{24}, HS, J_3, \dots$

• M_{12} is the smallest group with $d_{\mathcal{S}}(G) \ge 4$.

 $\blacksquare \ d_{\mathcal{S}}(G) \ge 4 \implies G \text{ is almost simple (i.e. } T \leqslant G \leqslant Aut(T))$

Let G be a finite insoluble group and let $d_{\mathcal{S}}(G)$ be the maximal diameter of a connected component of the soluble graph $\Gamma_{\mathcal{S}}(G)$.

Theorem (B, Lucchini & Nemmi, 2021). $\Gamma_{S}(G)$ is connected and $d_{S}(G) \leq 5$.

• There are groups with $d_{\mathcal{S}}(G) = 4$, e.g.

 $A_{11}, A_{12}, PSL_5(2), PSU_5(2), M_{12}, M_{22}, M_{23}, M_{24}, HS, J_3, \dots$

■ M_{12} is the smallest group with $d_S(G) \ge 4$.

 $\blacksquare \ d_{\mathcal{S}}(G) \ge 4 \implies G \text{ is almost simple (i.e. } T \leqslant G \leqslant \operatorname{Aut}(T))$

■ There are infinitely many simple groups with d_S(G) = 2. e.g. G = PSL₂(q) with q ≥ 4 even.

Theorem (Akbari, Lewis, Mirzajani & Moghaddamfar, 2020). $\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leq 11$.

Question (ALMM): Are there any groups with $d_{\mathcal{S}}(G) \ge 4$?

Theorem (Akbari, Lewis, Mirzajani & Moghaddamfar, 2020). $\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leq 11$.

Question (ALMM): Are there any groups with $d_{\mathcal{S}}(G) \ge 4$?

Suppose R(G) = 1 and let Inv(G) be the set of involutions in G. **ALMM:** $d(x, Inv(G)) \leq 5$ for all $1 \neq x \in G$, so $d_{\mathcal{S}}(G) \leq 11$.

Theorem (Akbari, Lewis, Mirzajani & Moghaddamfar, 2020). $\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leq 11$.

Question (ALMM): Are there any groups with $d_{\mathcal{S}}(G) \ge 4$?

Suppose R(G) = 1 and let Inv(G) be the set of involutions in G.

ALMM: $d(x, \operatorname{Inv}(G)) \leq 5$ for all $1 \neq x \in G$, so $d_{\mathcal{S}}(G) \leq 11$.

The vertices of the **soluble prime graph** $\Pi_s(G)$ are the prime divisors of |G|, with $p \sim q$ iff G has a soluble subgroup of order divisible by pq.

Theorem (Akbari, Lewis, Mirzajani & Moghaddamfar, 2020). $\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leq 11$.

Question (ALMM): Are there any groups with $d_{\mathcal{S}}(G) \ge 4$?

Suppose R(G) = 1 and let Inv(G) be the set of involutions in G.

ALMM: $d(x, \operatorname{Inv}(G)) \leq 5$ for all $1 \neq x \in G$, so $d_{\mathcal{S}}(G) \leq 11$.

The vertices of the **soluble prime graph** $\Pi_s(G)$ are the prime divisors of |G|, with $p \sim q$ iff G has a soluble subgroup of order divisible by pq.

The following result is a key ingredient in **ALMM** (it relies on CFSG):

Hagie (2000): $\Pi_s(G)$ is connected and $d(2, p) \leq 3$ for any prime p.

Our approach yields the following result.

Theorem. If
$$R(G) = 1$$
 and $1 \neq x \in G$, then either

■
$$d(x, \operatorname{Inv}(G)) \leq 2$$
, or

•
$$G = M_{23}$$
, $|x| = 23$ and $d(x, Inv(G)) = 3$.

Our approach yields the following result.

Theorem. If
$$R(G) = 1$$
 and $1 \neq x \in G$, then either

d(x,
$$Inv(G)$$
) ≤ 2 , or

•
$$G = M_{23}$$
, $|x| = 23$ and $d(x, Inv(G)) = 3$.

Suppose $G = M_{23}$ and |x| = 23. Let $B_r(x)$ be the ball of radius r at x.

■ $H = N_G(\langle x \rangle) = C_{23}:C_{11}$ is the unique maximal subgroup of G containing x, so $B_1(x) = H^{\#} = \{y \in H : y \neq 1\}$.

Our approach yields the following result.

Theorem. If
$$R(G) = 1$$
 and $1 \neq x \in G$, then either

d(x,
$$Inv(G)$$
) ≤ 2 , or

•
$$G = M_{23}$$
, $|x| = 23$ and $d(x, Inv(G)) = 3$.

Suppose $G = M_{23}$ and |x| = 23. Let $B_r(x)$ be the ball of radius r at x.

- $H = N_G(\langle x \rangle) = C_{23}: C_{11}$ is the unique maximal subgroup of G containing x, so $B_1(x) = H^{\#} = \{y \in H : y \neq 1\}$.
- Suppose $y \in B_1(x)$ has order 11 and let J be a maximal subgroup of G containing y. Then $J = C_{23}:C_{11}$, M_{11} or M_{22} .

Our approach yields the following result.

Theorem. If
$$R(G) = 1$$
 and $1 \neq x \in G$, then either

d(x,
$$Inv(G)$$
) ≤ 2 , or

•
$$G = M_{23}$$
, $|x| = 23$ and $d(x, Inv(G)) = 3$.

Suppose $G = M_{23}$ and |x| = 23. Let $B_r(x)$ be the ball of radius r at x.

- $H = N_G(\langle x \rangle) = C_{23}: C_{11}$ is the unique maximal subgroup of G containing x, so $B_1(x) = H^{\#} = \{y \in H : y \neq 1\}.$
- Suppose $y \in B_1(x)$ has order 11 and let J be a maximal subgroup of G containing y. Then $J = C_{23}:C_{11}$, M_{11} or M_{22} .
- If $J = M_{11}$ or M_{22} , then $N_J(\langle y \rangle) = C_{11}:C_5$ is the only maximal soluble subgroup of J containing y, so $\{|z| : z \in B_2(x)\} = \{5, 11, 23\}$.

Lemma. Let G be a finite insoluble group. Then

- $\blacksquare \ \Gamma_{\mathcal{S}}(G) \text{ is connected iff } \Gamma_{\mathcal{S}}(G/R(G)) \text{ is connected.}$
- In addition, $d_{\mathcal{S}}(G) = d_{\mathcal{S}}(G/R(G))$.

Proof. $\langle x, y \rangle \leq G$ is soluble iff $\langle xR(G), yR(G) \rangle \leq G/R(G)$ is soluble. \Box

Lemma. Let G be a finite insoluble group. Then

- $\blacksquare \ \Gamma_{\mathcal{S}}(G) \text{ is connected iff } \Gamma_{\mathcal{S}}(G/R(G)) \text{ is connected.}$
- In addition, $d_{\mathcal{S}}(G) = d_{\mathcal{S}}(G/R(G))$.

Proof. $\langle x, y \rangle \leq G$ is soluble iff $\langle xR(G), yR(G) \rangle \leq G/R(G)$ is soluble.

Theorem. Suppose G is insoluble, but not almost simple. Then $\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leq 3$.

Lemma. Let G be a finite insoluble group. Then

- $\blacksquare \ \Gamma_{\mathcal{S}}(G) \text{ is connected iff } \Gamma_{\mathcal{S}}(G/R(G)) \text{ is connected.}$
- In addition, $d_{\mathcal{S}}(G) = d_{\mathcal{S}}(G/R(G))$.

Proof. $\langle x, y \rangle \leq G$ is soluble iff $\langle xR(G), yR(G) \rangle \leq G/R(G)$ is soluble.

Theorem. Suppose G is insoluble, but not almost simple. Then $\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leq 3$.

• We may assume R(G) = 1. Suppose $soc(G) = N_1 \times \cdots \times N_k$, where $k \ge 2$ and each N_i is a non-abelian minimal normal subgroup of G.

Lemma. Let G be a finite insoluble group. Then

- $\Gamma_{\mathcal{S}}(G)$ is connected iff $\Gamma_{\mathcal{S}}(G/R(G))$ is connected.
- In addition, $d_{\mathcal{S}}(G) = d_{\mathcal{S}}(G/R(G))$.

Proof. $\langle x, y \rangle \leq G$ is soluble iff $\langle xR(G), yR(G) \rangle \leq G/R(G)$ is soluble.

Theorem. Suppose G is insoluble, but not almost simple. Then $\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leq 3$.

- We may assume R(G) = 1. Suppose $soc(G) = N_1 \times \cdots \times N_k$, where $k \ge 2$ and each N_i is a non-abelian minimal normal subgroup of G.
- If $1 \neq x, y \in G$, then there exist nontrivial $s \in N_1$, $t \in N_2$ such that [x, s] = [y, t] = 1, so $x \sim s \sim t \sim y$ is a path in $\Gamma_{\mathcal{S}}(G)$.

Lemma. Let G be a finite insoluble group. Then

- $\blacksquare \ \Gamma_{\mathcal{S}}(G) \text{ is connected iff } \Gamma_{\mathcal{S}}(G/R(G)) \text{ is connected.}$
- In addition, $d_{\mathcal{S}}(G) = d_{\mathcal{S}}(G/R(G))$.

Proof. $\langle x, y \rangle \leq G$ is soluble iff $\langle xR(G), yR(G) \rangle \leq G/R(G)$ is soluble.

Theorem. Suppose G is insoluble, but not almost simple. Then $\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leq 3$.

- We may assume R(G) = 1. Suppose $soc(G) = N_1 \times \cdots \times N_k$, where $k \ge 2$ and each N_i is a non-abelian minimal normal subgroup of G.
- If $1 \neq x, y \in G$, then there exist nontrivial $s \in N_1$, $t \in N_2$ such that [x,s] = [y,t] = 1, so $x \sim s \sim t \sim y$ is a path in $\Gamma_{\mathcal{S}}(G)$.
- This leaves the **monolithic** case (soc(G) = $T \times \cdots \times T$, T simple).

Theorem. Let $G = S_n$ with $n \ge 6$.

Then $d_{\mathcal{S}}(G) = 3$ and $d(x, Inv(G)) \leq 1$ for all $1 \neq x \in G$.

Theorem. Let $G = S_n$ with $n \ge 6$. Then $d_S(G) = 3$ and $d(x, \operatorname{Inv}(G)) \le 1$ for all $1 \ne x \in G$.

Each $x \in G$ is real, so $|N_G(\langle x \rangle)|$ is even and thus $d_S(G) \leq 3$.

Theorem. Let $G = S_n$ with $n \ge 6$. Then $d_S(G) = 3$ and $d(x, Inv(G)) \le 1$ for all $1 \ne x \in G$.

Each $x \in G$ is real, so $|N_G(\langle x \rangle)|$ is even and thus $d_S(G) \leq 3$.

Suppose $n \ge 7$ is a prime. Let $x \in G$ be an *n*-cycle.

Theorem. Let $G = S_n$ with $n \ge 6$. Then $d_S(G) = 3$ and $d(x, Inv(G)) \le 1$ for all $1 \ne x \in G$.

Each $x \in G$ is real, so $|N_G(\langle x \rangle)|$ is even and thus $d_S(G) \leq 3$.

Suppose $n \ge 7$ is a prime. Let $x \in G$ be an *n*-cycle.

Then $H = N_G(\langle x \rangle) = C_n : C_{n-1}$ is the unique maximal soluble subgroup of G containing x, so

$$B_1(x)=\{y\in G^\#\,:\,\langle x,y
angle\,\,$$
 is soluble $\}=H^\#.$

Theorem. Let $G = S_n$ with $n \ge 6$. Then $d_S(G) = 3$ and $d(x, Inv(G)) \le 1$ for all $1 \ne x \in G$.

Each $x \in G$ is real, so $|N_G(\langle x \rangle)|$ is even and thus $d_S(G) \leq 3$.

Suppose $n \ge 7$ is a prime. Let $x \in G$ be an *n*-cycle.

Then $H = N_G(\langle x \rangle) = C_n : C_{n-1}$ is the unique maximal soluble subgroup of G containing x, so

$$B_1(x) = \{y \in G^\# : \langle x, y \rangle \text{ is soluble}\} = H^\#.$$

By **B**, **Guralnick & Saxl (2011)**, there exists $g \in G$ with $H \cap H^g = 1$, hence $B_1(x) \cap B_1(x^g) = \emptyset$ and thus $d(x, x^g) \ge 3$.

Alternating groups

Theorem. Let $G = A_n$ with $n \ge 6$.

• We have $3 \leq d_{\mathcal{S}}(G) \leq 5$.

 $\blacksquare \ d_{\mathcal{S}}(G) \ge 4 \text{ only if } n \in \{p, p+1\} \text{ for a prime } p \equiv 3 \pmod{4}.$

 $\blacksquare \ d_{\mathcal{S}}(G) \ge 4 \text{ if } n = 2p + 1 \text{ and } p \ge 5 \text{ are primes.}$

Alternating groups

Theorem. Let $G = A_n$ with $n \ge 6$. • We have $3 \le d_S(G) \le 5$. • $d_S(G) \ge 4$ only if $n \in \{p, p+1\}$ for a prime $p \equiv 3 \pmod{4}$. • $d_S(G) \ge 4$ if n = 2p + 1 and $p \ge 5$ are primes.

Suppose n = 2p + 1 and $p \ge 5$ are primes. We use a counting argument to prove the existence of *n*-cycles $x, y \in G$ with $d(x, y) \ge 4$.

Alternating groups

Theorem. Let
$$G = A_n$$
 with $n \ge 6$.
• We have $3 \le d_S(G) \le 5$.
• $d_S(G) \ge 4$ only if $n \in \{p, p+1\}$ for a prime $p \equiv 3 \pmod{4}$.
• $d_S(G) \ge 4$ if $n = 2p + 1$ and $p \ge 5$ are primes.

Suppose n = 2p + 1 and $p \ge 5$ are primes. We use a counting argument to prove the existence of *n*-cycles $x, y \in G$ with $d(x, y) \ge 4$.

Let \mathcal{A} be the set of *n*-cycles in G and fix $x \in \mathcal{A}$. It suffices to show that

$$|\mathcal{A} \cap B_3(x)| = 1 + \alpha_1 + \alpha_2 + \alpha_3 < |\mathcal{A}|,$$

where $\alpha_k = |\{y \in \mathcal{A} : d(x, y) = k\}|.$

Sporadic groups

Theorem. Let G be an almost simple sporadic group with socle T.

• We have
$$3 \leqslant d_{\mathcal{S}}(G) \leqslant 5$$
.

•
$$d_{\mathcal{S}}(G) \ge 4$$
 only if $G = T$.

■ $d_{\mathcal{S}}(G) = 4$ if $G = M_{12}$, M_{22} , M_{23} , M_{24} , HS or J_3 .

■
$$d_{\mathcal{S}}(G) \ge 4$$
 if $G = \operatorname{Co}_2$, Co_3 , McL or \mathbb{B} .

Sporadic groups

Theorem. Let G be an almost simple sporadic group with socle T.

• We have
$$3 \leqslant d_{\mathcal{S}}(G) \leqslant 5$$
.

•
$$d_{\mathcal{S}}(G) \ge 4$$
 only if $G = T$.

•
$$d_{\mathcal{S}}(G) = 4$$
 if $G = M_{12}$, M_{22} , M_{23} , M_{24} , HS or J_3 .

■
$$d_{\mathcal{S}}(G) \ge 4$$
 if $G = \operatorname{Co}_2$, Co_3 , McL or \mathbb{B} .

The proof relies heavily on **computational methods** (using Magma).

e.g. If G = HS and |x| = 11, then $H = N_G(\langle x \rangle) = C_{11}:C_5$, $B_1(x) = H^{\#}$.

Sporadic groups

Theorem. Let G be an almost simple sporadic group with socle T.

• We have
$$3 \leqslant d_{\mathcal{S}}(G) \leqslant 5$$
.

•
$$d_{\mathcal{S}}(G) \ge 4$$
 only if $G = T$.

•
$$d_{\mathcal{S}}(G) = 4$$
 if $G = M_{12}$, M_{22} , M_{23} , M_{24} , HS or J_3 .

■
$$d_{\mathcal{S}}(G) \ge 4$$
 if $G = \operatorname{Co}_2$, Co_3 , McL or \mathbb{B} .

The proof relies heavily on computational methods (using Magma).

e.g. If
$$G=\mathsf{HS}$$
 and $|x|=11$, then $H=N_G(\langle x
angle)=C_{11}$: C_5 , $B_1(x)=H^{\#}$.

By random search, there exists $g \in G$ such that $B_1(x) \cap B_1(x^g) = \emptyset$ and $\langle a, b \rangle \notin S$ for all $a \in B_1(x)$, $b \in B_1(x^g)$, so $d(x, x^g) \ge 4$.

The groups with socle $PSL_2(q)$ require special attention.

The groups with socle $PSL_2(q)$ require special attention.

Theorem. If G has socle $PSL_2(q)$, then

$$d_{\mathcal{S}}(G) = \left\{egin{array}{cc} 2 & ext{if } \operatorname{PGL}_2(q) \leqslant G ext{ or } q \in \{5,7\} \ 3 & ext{otherwise.} \end{array}
ight.$$

The groups with socle $PSL_2(q)$ require special attention.

Theorem. If G has socle $PSL_2(q)$, then

$$d_{\mathcal{S}}(G) = \left\{ egin{array}{cc} 2 & ext{if } \operatorname{PGL}_2(q) \leqslant G ext{ or } q \in \{5,7\} \ 3 & ext{otherwise.} \end{array}
ight.$$

Example. Suppose $G = PGL_2(q)$. If $A = D_{2(q+1)}$ and $B = [q]: C_{q-1}$ then

$$G = \bigcup_{g \in G} A^g \cup \bigcup_{h \in G} B^h.$$

The groups with socle $PSL_2(q)$ require special attention.

Theorem. If G has socle $PSL_2(q)$, then

$$d_{\mathcal{S}}(G) = \left\{egin{array}{cc} 2 & ext{if } \operatorname{PGL}_2(q) \leqslant G ext{ or } q \in \{5,7\} \ 3 & ext{otherwise.} \end{array}
ight.$$

Example. Suppose $G = PGL_2(q)$. If $A = D_{2(q+1)}$ and $B = [q]:C_{q-1}$ then

$$G = \bigcup_{g \in G} A^g \cup \bigcup_{h \in G} B^h.$$

We have $|B|^2 > |G|$, |A||B| > |G| and one checks that $A \cap A^g \neq 1$ for all $g \in G$. So any two subgroups in the union intersect nontrivially.

The groups with socle $PSL_2(q)$ require special attention.

Theorem. If G has socle $PSL_2(q)$, then

$$d_{\mathcal{S}}(G) = \left\{egin{array}{cc} 2 & ext{if } \operatorname{PGL}_2(q) \leqslant G ext{ or } q \in \{5,7\} \ 3 & ext{otherwise.} \end{array}
ight.$$

Example. Suppose $G = PGL_2(q)$. If $A = D_{2(q+1)}$ and $B = [q]:C_{q-1}$ then

$$G = \bigcup_{g \in G} A^g \cup \bigcup_{h \in G} B^h.$$

We have $|B|^2 > |G|$, |A||B| > |G| and one checks that $A \cap A^g \neq 1$ for all $g \in G$. So any two subgroups in the union intersect nontrivially.

Therefore, $B_1(x) \cap B_1(y) \neq \emptyset$ for all $1 \neq x, y \in G$ and thus $d_{\mathcal{S}}(G) = 2$.

Let G be an almost simple group of Lie type over \mathbb{F}_q with socle T. Let $B = N_G(P)$ be a **Borel subgroup** of G.

Let G be an almost simple group of Lie type over \mathbb{F}_q with socle T. Let $B = N_G(P)$ be a **Borel subgroup** of G.

Lemma. |B| is odd $\iff T = \mathsf{PSL}_2(q)$ and $q \equiv 3 \pmod{4}$.

Let G be an almost simple group of Lie type over \mathbb{F}_q with socle T. Let $B = N_G(P)$ be a **Borel subgroup** of G.

Lemma. |B| is odd $\iff T = \mathsf{PSL}_2(q)$ and $q \equiv 3 \pmod{4}$.

Proposition. If |x| = r is an odd prime, then either d(x, Inv(G)) = 1, or $(T, r) \in \mathcal{L}$ is known (e.g. $T = E_6(2)$ and r = 73).

Let G be an almost simple group of Lie type over \mathbb{F}_q with socle T. Let $B = N_G(P)$ be a **Borel subgroup** of G.

Lemma. |B| is odd $\iff T = \mathsf{PSL}_2(q)$ and $q \equiv 3 \pmod{4}$.

Proposition. If |x| = r is an odd prime, then either d(x, Inv(G)) = 1, or $(T, r) \in \mathcal{L}$ is known (e.g. $T = E_6(2)$ and r = 73).

Theorem. $d(x, \operatorname{Inv}(G)) \leq 2$ for all $x \in G^{\#}$, so $d_{\mathcal{S}}(G) \leq 5$.

Let G be an almost simple group of Lie type over \mathbb{F}_q with socle T. Let $B = N_G(P)$ be a **Borel subgroup** of G.

Lemma. |B| is odd $\iff T = \mathsf{PSL}_2(q)$ and $q \equiv 3 \pmod{4}$.

Proposition. If |x| = r is an odd prime, then either d(x, Inv(G)) = 1, or $(T, r) \in \mathcal{L}$ is known (e.g. $T = E_6(2)$ and r = 73).

Theorem. $d(x, \operatorname{Inv}(G)) \leq 2$ for all $x \in G^{\#}$, so $d_{\mathcal{S}}(G) \leq 5$.

Sketch. Let $x \in G^{\#}$ with $z = x^m$ of prime order r, so $x \sim z$ and by the proposition we may assume r is odd and $(T, r) \in \mathcal{L}$.

Let G be an almost simple group of Lie type over \mathbb{F}_q with socle T. Let $B = N_G(P)$ be a **Borel subgroup** of G.

Lemma. |B| is odd $\iff T = \mathsf{PSL}_2(q)$ and $q \equiv 3 \pmod{4}$.

Proposition. If |x| = r is an odd prime, then either d(x, Inv(G)) = 1, or $(T, r) \in \mathcal{L}$ is known (e.g. $T = E_6(2)$ and r = 73).

Theorem. $d(x, \operatorname{Inv}(G)) \leq 2$ for all $x \in G^{\#}$, so $d_{\mathcal{S}}(G) \leq 5$.

Sketch. Let $x \in G^{\#}$ with $z = x^m$ of prime order r, so $x \sim z$ and by the proposition we may assume r is odd and $(T, r) \in \mathcal{L}$.

Here $N_G(\langle z \rangle)$ is soluble and contains x and an element y of prime order s with $(T, s) \notin \mathcal{L}$. So $x \sim y$ and $d(y, \operatorname{Inv}(G)) = 1$ by the proposition.

Question. Is there a finite group with $d_{\mathcal{S}}(G) = 5$? Are there infinitely many with $d_{\mathcal{S}}(G) \ge 4$?

Question. Is there a finite group with $d_S(G) = 5$? Are there infinitely many with $d_S(G) \ge 4$?

We know that the answer to the latter question is **yes** if there are infinitely many Sophie Germain primes...

Conjecture. If $p \ge 11$ is a prime, $p \equiv 3 \pmod{4}$, then $d_{\mathcal{S}}(A_p) \ge 4$.

Question. Is there a finite group with $d_S(G) = 5$? Are there infinitely many with $d_S(G) \ge 4$?

We know that the answer to the latter question is **yes** if there are infinitely many Sophie Germain primes...

Conjecture. If $p \ge 11$ is a prime, $p \equiv 3 \pmod{4}$, then $d_{\mathcal{S}}(A_p) \ge 4$.

Question. $d_{\mathcal{S}}(G) \ge 4 \implies G$ is simple?

Question. Is there a finite group with $d_S(G) = 5$? Are there infinitely many with $d_S(G) \ge 4$?

We know that the answer to the latter question is **yes** if there are infinitely many Sophie Germain primes...

Conjecture. If $p \ge 11$ is a prime, $p \equiv 3 \pmod{4}$, then $d_S(A_p) \ge 4$.

Question. $d_{\mathcal{S}}(G) \ge 4 \implies G$ is simple?

Question. Can we determine the simple groups with $d_{\mathcal{S}}(G) = 2$?

Here we can prove that G has to be a **classical** group. The only known examples are $PSL_2(q)$ with $q \ge 4$ even, $PSL_3(2)$ and $PSU_4(2)$.

Generalisations

Let \mathcal{F} be a family of groups (e.g. abelian, soluble, nilpotent, metacyclic, metabelian, etc.) and fix a finite group $G \notin \mathcal{F}$.

Let $\Lambda_{\mathcal{F}}(G)$ be the graph with vertex set G, where $x \sim y$ iff $\langle x, y \rangle \in \mathcal{F}$.

Generalisations

Let \mathcal{F} be a family of groups (e.g. abelian, soluble, nilpotent, metacyclic, metabelian, etc.) and fix a finite group $G \notin \mathcal{F}$.

Let $\Lambda_{\mathcal{F}}(G)$ be the graph with vertex set G, where $x \sim y$ iff $\langle x, y \rangle \in \mathcal{F}$.

Let

$$\mathcal{U}_{\mathcal{F}}(G) = \{x \in G \, : \, \langle x, y \rangle \in \mathcal{F} \text{ for all } y \in G\}$$

be the set of universal vertices in $\Lambda_{\mathcal{F}}(G)$ and let $\Gamma_{\mathcal{F}}(G)$ be the graph with vertices $G \setminus \mathcal{U}_{\mathcal{F}}(G)$, where $x \sim y$ iff $\langle x, y \rangle \in \mathcal{F}$.

Generalisations

Let \mathcal{F} be a family of groups (e.g. abelian, soluble, nilpotent, metacyclic, metabelian, etc.) and fix a finite group $G \notin \mathcal{F}$.

Let $\Lambda_{\mathcal{F}}(G)$ be the graph with vertex set G, where $x \sim y$ iff $\langle x, y \rangle \in \mathcal{F}$.

Let

$$\mathcal{U}_{\mathcal{F}}(G) = \{x \in G \, : \, \langle x, y \rangle \in \mathcal{F} \text{ for all } y \in G\}$$

be the set of universal vertices in $\Lambda_{\mathcal{F}}(G)$ and let $\Gamma_{\mathcal{F}}(G)$ be the graph with vertices $G \setminus \mathcal{U}_{\mathcal{F}}(G)$, where $x \sim y$ iff $\langle x, y \rangle \in \mathcal{F}$.

Some immediate questions:

■ Can we identify $\mathcal{U}_{\mathcal{F}}(G)$?

If it is a subgroup, how are $\Gamma_{\mathcal{F}}(G)$ and $\Gamma_{\mathcal{F}}(G/\mathcal{U}_{\mathcal{F}}(G))$ related?

Let \mathcal{N} be the family of **nilpotent** groups and fix a finite group $G \notin \mathcal{N}$.

Let \mathcal{N} be the family of **nilpotent** groups and fix a finite group $G \notin \mathcal{N}$.

 $\blacksquare \ \mathcal{U}_{\mathcal{N}}(G) = Z_{\infty}(G), \text{ so diam}(\Gamma_{\mathcal{N}}(G)) = \text{diam}(\Gamma_{\mathcal{N}}(G/\mathcal{U}_{\mathcal{N}}(G))).$

Let \mathcal{N} be the family of **nilpotent** groups and fix a finite group $G \notin \mathcal{N}$.

- $\blacksquare \ \mathcal{U}_{\mathcal{N}}(G) = Z_{\infty}(G), \text{ so diam}(\Gamma_{\mathcal{N}}(G)) = \text{diam}(\Gamma_{\mathcal{N}}(G/\mathcal{U}_{\mathcal{N}}(G))).$
- If $Z_{\infty}(G) = 1$, then $\Gamma_{\mathcal{N}}(G)$ and $\Gamma(G)$ have the same connected components, so diam $(\Gamma_{\mathcal{N}}(G)) \leq 10$ by Morgan & Parker (2013).

Let \mathcal{N} be the family of **nilpotent** groups and fix a finite group $G \notin \mathcal{N}$.

- $\blacksquare \ \mathcal{U}_{\mathcal{N}}(G) = Z_{\infty}(G), \text{ so diam}(\Gamma_{\mathcal{N}}(G)) = \text{diam}(\Gamma_{\mathcal{N}}(G/\mathcal{U}_{\mathcal{N}}(G))).$
- If $Z_{\infty}(G) = 1$, then $\Gamma_{\mathcal{N}}(G)$ and $\Gamma(G)$ have the same connected components, so diam $(\Gamma_{\mathcal{N}}(G)) \leq 10$ by Morgan & Parker (2013).

Fix a family \mathcal{F} as above.

■ Q1. Is there an absolute constant *c* such that diam($\Gamma_{\mathcal{F}}(G)$) $\leq c$ for every finite group $G \notin \mathcal{F}$?

Let \mathcal{N} be the family of **nilpotent** groups and fix a finite group $G \notin \mathcal{N}$.

- $\blacksquare \ \mathcal{U}_{\mathcal{N}}(G) = Z_{\infty}(G), \text{ so diam}(\Gamma_{\mathcal{N}}(G)) = \text{diam}(\Gamma_{\mathcal{N}}(G/\mathcal{U}_{\mathcal{N}}(G))).$
- If $Z_{\infty}(G) = 1$, then $\Gamma_{\mathcal{N}}(G)$ and $\Gamma(G)$ have the same connected components, so diam $(\Gamma_{\mathcal{N}}(G)) \leq 10$ by Morgan & Parker (2013).

Fix a family \mathcal{F} as above.

- Q1. Is there an absolute constant *c* such that diam($\Gamma_{\mathcal{F}}(G)$) $\leq c$ for every finite group $G \notin \mathcal{F}$?
- **Q**2. And if we only consider groups with $\mathcal{U}_{\mathcal{F}}(G) = 1$?

Let \mathcal{N} be the family of **nilpotent** groups and fix a finite group $G \notin \mathcal{N}$.

- $\blacksquare \ \mathcal{U}_{\mathcal{N}}(G) = Z_{\infty}(G), \text{ so diam}(\Gamma_{\mathcal{N}}(G)) = \text{diam}(\Gamma_{\mathcal{N}}(G/\mathcal{U}_{\mathcal{N}}(G))).$
- If $Z_{\infty}(G) = 1$, then $\Gamma_{\mathcal{N}}(G)$ and $\Gamma(G)$ have the same connected components, so diam $(\Gamma_{\mathcal{N}}(G)) \leq 10$ by Morgan & Parker (2013).

Fix a family \mathcal{F} as above.

- Q1. Is there an absolute constant *c* such that diam($\Gamma_{\mathcal{F}}(G)$) $\leq c$ for every finite group $G \notin \mathcal{F}$?
- **Q**2. And if we only consider groups with $U_{\mathcal{F}}(G) = 1$?

e.g. if $\mathcal{F} = \mathcal{A}$ is the collection of abelian groups, then the answers are **no** to Q1, but yes to Q2 (with c = 10).

e.g. if $\mathcal{F} = \mathcal{S}$ or \mathcal{N} , then yes to Q1 (with c = 5 or 10, respectively).