The soluble graph of a finite group

Tim Burness

14th Iranian International Group Theory Conference
February 3rd 2022

The commuting graph

Let \mathcal{A} be the collection of finite abelian groups.
Let G be a finite non-abelian group with centre $Z(G)$.

The commuting graph

Let \mathcal{A} be the collection of finite abelian groups.
Let G be a finite non-abelian group with centre $Z(G)$.
Let $\Lambda_{\mathcal{A}}(G)$ be the graph with vertex set G, where

$$
x \sim y \Longleftrightarrow\langle x, y\rangle \in \mathcal{A} \Longleftrightarrow x y=y x
$$

Let

$$
\mathcal{U}_{\mathcal{A}}(G)=\{x \in G: x \sim y \text { for all } y \in G\}=Z(G)
$$

be the set of universal vertices in $\Lambda_{\mathcal{A}}(G)$.

The commuting graph

Let \mathcal{A} be the collection of finite abelian groups.
Let G be a finite non-abelian group with centre $Z(G)$.
Let $\Lambda_{\mathcal{A}}(G)$ be the graph with vertex set G, where

$$
x \sim y \Longleftrightarrow\langle x, y\rangle \in \mathcal{A} \Longleftrightarrow x y=y x
$$

Let

$$
\mathcal{U}_{\mathcal{A}}(G)=\{x \in G: x \sim y \text { for all } y \in G\}=Z(G)
$$

be the set of universal vertices in $\Lambda_{\mathcal{A}}(G)$.

Definition. Let $\Gamma(G)$ be the graph with vertices $G \backslash Z(G)$, where $x \sim y$ if and only if $x y=y x$.

This is the commuting graph of G.

Connectedness

Example. Let $G=S_{p}$, where $p \geqslant 3$ is a prime.
If $x \in G$ is a p-cycle, then $C_{G}(x)=\langle x\rangle$ and thus $\Gamma(G)$ is disconnected.

Connectedness

Example. Let $G=S_{p}$, where $p \geqslant 3$ is a prime.
If $x \in G$ is a p-cycle, then $C_{G}(x)=\langle x\rangle$ and thus $\Gamma(G)$ is disconnected.
Theorem (Iranmanesh \& Jafarzadeh, 2008). If $n \geqslant 3$, then $\Gamma\left(S_{n}\right)$ is connected iff n and $n-1$ are composite, in which case diam $\left(\Gamma\left(S_{n}\right)\right) \leqslant 5$.

Connectedness

Example. Let $G=S_{p}$, where $p \geqslant 3$ is a prime.
If $x \in G$ is a p-cycle, then $C_{G}(x)=\langle x\rangle$ and thus $\Gamma(G)$ is disconnected.
Theorem (Iranmanesh \& Jafarzadeh, 2008). If $n \geqslant 3$, then $\Gamma\left(S_{n}\right)$ is connected iff n and $n-1$ are composite, in which case diam $\left(\Gamma\left(S_{n}\right)\right) \leqslant 5$.

Theorem (Giudici \& Parker, 2013). For any $d \in \mathbb{N}$, there exists a 2-group G such that $\Gamma(G)$ is connected and $\operatorname{diam}(\Gamma(G)) \geqslant d$.

Connectedness

Example. Let $G=S_{p}$, where $p \geqslant 3$ is a prime.
If $x \in G$ is a p-cycle, then $C_{G}(x)=\langle x\rangle$ and thus $\Gamma(G)$ is disconnected.
Theorem (Iranmanesh \& Jafarzadeh, 2008). If $n \geqslant 3$, then $\Gamma\left(S_{n}\right)$ is connected iff n and $n-1$ are composite, in which case diam $\left(\Gamma\left(S_{n}\right)\right) \leqslant 5$.

Theorem (Giudici \& Parker, 2013). For any $d \in \mathbb{N}$, there exists a 2-group G such that $\Gamma(G)$ is connected and $\operatorname{diam}(\Gamma(G)) \geqslant d$.

Theorem (Morgan \& Parker, 2013).
If $Z(G)=1$, then $\operatorname{diam}(\Gamma(G)) \leqslant 10$.

Connectedness

Example. Let $G=S_{p}$, where $p \geqslant 3$ is a prime.
If $x \in G$ is a p-cycle, then $C_{G}(x)=\langle x\rangle$ and thus $\Gamma(G)$ is disconnected.
Theorem (Iranmanesh \& Jafarzadeh, 2008). If $n \geqslant 3$, then $\Gamma\left(S_{n}\right)$ is connected iff n and $n-1$ are composite, in which case diam $\left(\Gamma\left(S_{n}\right)\right) \leqslant 5$.

Theorem (Giudici \& Parker, 2013). For any $d \in \mathbb{N}$, there exists a 2-group G such that $\Gamma(G)$ is connected and $\operatorname{diam}(\Gamma(G)) \geqslant d$.

Theorem (Morgan \& Parker, 2013).
If $Z(G)=1$, then $\operatorname{diam}(\Gamma(G)) \leqslant 10$.

- It is not known if the upper bound of 10 is best possible, but there are examples with $\operatorname{diam}(\Gamma(G))=8$.

Parker, 2013: If G is soluble and $Z(G)=1$, then $\operatorname{diam}(\Gamma(G)) \leqslant 8$.

The soluble graph

Let \mathcal{S} be the collection of finite soluble groups.
Let G be a finite insoluble group with soluble radical $R(G)$.
Let $\Lambda_{\mathcal{S}}(G)$ be the graph with vertex set G, where $x \sim y$ iff $\langle x, y\rangle \in \mathcal{S}$.

The soluble graph

Let \mathcal{S} be the collection of finite soluble groups.
Let G be a finite insoluble group with soluble radical $R(G)$.
Let $\Lambda_{\mathcal{S}}(G)$ be the graph with vertex set G, where $x \sim y$ iff $\langle x, y\rangle \in \mathcal{S}$.
Let $\mathcal{U}_{\mathcal{S}}(G)$ be the set of universal vertices in $\Lambda_{\mathcal{S}}(G)$, so

$$
\mathcal{U}_{\mathcal{S}}(G)=\{x \in G:\langle x, y\rangle \in \mathcal{S} \text { for all } y \in G\}
$$

Theorem (Guralnick et al. 2006). $\mathcal{U}_{\mathcal{S}}(G)=R(G)$

The soluble graph

Let \mathcal{S} be the collection of finite soluble groups.
Let G be a finite insoluble group with soluble radical $R(G)$.
Let $\Lambda_{\mathcal{S}}(G)$ be the graph with vertex set G, where $x \sim y$ iff $\langle x, y\rangle \in \mathcal{S}$.
Let $\mathcal{U}_{\mathcal{S}}(G)$ be the set of universal vertices in $\Lambda_{\mathcal{S}}(G)$, so

$$
\mathcal{U}_{\mathcal{S}}(G)=\{x \in G:\langle x, y\rangle \in \mathcal{S} \text { for all } y \in G\}
$$

Theorem (Guralnick et al. 2006). $\mathcal{U}_{\mathcal{S}}(G)=R(G)$

Definition. Let $\Gamma_{\mathcal{S}}(G)$ be the graph with vertices $G \backslash R(G)$, where $x \sim y$ if and only if $\langle x, y\rangle$ is soluble.

This is the soluble graph of G.

Example: $G=A_{5}$

Commuting graph of A_{5}

Soluble graph of A_{5}

Main results

Let G be a finite insoluble group and let $d_{\mathcal{S}}(G)$ be the maximal diameter of a connected component of the soluble graph $\Gamma_{\mathcal{S}}(G)$.

Main results

Let G be a finite insoluble group and let $d_{\mathcal{S}}(G)$ be the maximal diameter of a connected component of the soluble graph $\Gamma_{\mathcal{S}}(G)$.

Theorem (B, Lucchini \& Nemmi, 2021).
$\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leqslant 5$.

Main results

Let G be a finite insoluble group and let $d_{\mathcal{S}}(G)$ be the maximal diameter of a connected component of the soluble graph $\Gamma_{\mathcal{S}}(G)$.

Theorem (B, Lucchini \& Nemmi, 2021).
$\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leqslant 5$.

- There are groups with $d_{\mathcal{S}}(G)=4$, e.g.
$A_{11}, A_{12}, \mathrm{PSL}_{5}(2), \mathrm{PSU}_{5}(2), \mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{23}, \mathrm{M}_{24}, \mathrm{HS}, \mathrm{J}_{3}, \ldots$
- M_{12} is the smallest group with $d_{\mathcal{S}}(G) \geqslant 4$.

Main results

Let G be a finite insoluble group and let $d_{\mathcal{S}}(G)$ be the maximal diameter of a connected component of the soluble graph $\Gamma_{\mathcal{S}}(G)$.

Theorem (B, Lucchini \& Nemmi, 2021).

$\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leqslant 5$.

■ There are groups with $d_{\mathcal{S}}(G)=4$, e.g.

$$
A_{11}, A_{12}, \mathrm{PSL}_{5}(2), \mathrm{PSU}_{5}(2), \mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{23}, \mathrm{M}_{24}, \mathrm{HS}, \mathrm{~J}_{3}, \ldots
$$

- M_{12} is the smallest group with $d_{\mathcal{S}}(G) \geqslant 4$.

■ $d_{\mathcal{S}}(G) \geqslant 4 \Longrightarrow G$ is almost simple (i.e. $T \preccurlyeq G \leqslant \operatorname{Aut}(T)$)

Main results

Let G be a finite insoluble group and let $d_{\mathcal{S}}(G)$ be the maximal diameter of a connected component of the soluble graph $\Gamma_{\mathcal{S}}(G)$.

Theorem (B, Lucchini \& Nemmi, 2021).

$\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leqslant 5$.

- There are groups with $d_{\mathcal{S}}(G)=4$, e.g.

$$
A_{11}, A_{12}, \mathrm{PSL}_{5}(2), \mathrm{PSU}_{5}(2), \mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{23}, \mathrm{M}_{24}, \mathrm{HS}, \mathrm{~J}_{3}, \ldots
$$

- M_{12} is the smallest group with $d_{\mathcal{S}}(G) \geqslant 4$.

■ $d_{\mathcal{S}}(G) \geqslant 4 \Longrightarrow G$ is almost simple (i.e. $T \preccurlyeq G \leqslant \operatorname{Aut}(T)$)

- There are infinitely many simple groups with $d_{\mathcal{S}}(G)=2$.
e.g. $G=\mathrm{PSL}_{2}(q)$ with $q \geqslant 4$ even.

Earlier work

Theorem (Akbari, Lewis, Mirzajani \& Moghaddamfar, 2020).
$\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leqslant 11$.
Question (ALMM): Are there any groups with $d_{\mathcal{S}}(G) \geqslant 4$?

Earlier work

Theorem (Akbari, Lewis, Mirzajani \& Moghaddamfar, 2020).
$\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leqslant 11$.
Question (ALMM): Are there any groups with $d_{\mathcal{S}}(G) \geqslant 4$?

Suppose $R(G)=1$ and let $\operatorname{Inv}(G)$ be the set of involutions in G.
ALMM: $d(x, \operatorname{lnv}(G)) \leqslant 5$ for all $1 \neq x \in G$, so $d_{\mathcal{S}}(G) \leqslant 11$.

Earlier work

Theorem (Akbari, Lewis, Mirzajani \& Moghaddamfar, 2020).
$\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leqslant 11$.
Question (ALMM): Are there any groups with $d_{\mathcal{S}}(G) \geqslant 4$?

Suppose $R(G)=1$ and let $\operatorname{Inv}(G)$ be the set of involutions in G.
ALMM: $d(x, \operatorname{lnv}(G)) \leqslant 5$ for all $1 \neq x \in G$, so $d_{\mathcal{S}}(G) \leqslant 11$.

The vertices of the soluble prime graph $\Pi_{s}(G)$ are the prime divisors of $|G|$, with $p \sim q$ iff G has a soluble subgroup of order divisible by $p q$.

Earlier work

Theorem (Akbari, Lewis, Mirzajani \& Moghaddamfar, 2020).
$\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leqslant 11$.
Question (ALMM): Are there any groups with $d_{\mathcal{S}}(G) \geqslant 4$?

Suppose $R(G)=1$ and let $\operatorname{Inv}(G)$ be the set of involutions in G.
ALMM: $d(x, \operatorname{lnv}(G)) \leqslant 5$ for all $1 \neq x \in G$, so $d_{\mathcal{S}}(G) \leqslant 11$.

The vertices of the soluble prime graph $\Pi_{s}(G)$ are the prime divisors of $|G|$, with $p \sim q$ iff G has a soluble subgroup of order divisible by $p q$.

The following result is a key ingredient in ALMM (it relies on CFSG):
Hagie (2000): $\Pi_{s}(G)$ is connected and $d(2, p) \leqslant 3$ for any prime p.

Involution distance

Our approach yields the following result.

Theorem. If $R(G)=1$ and $1 \neq x \in G$, then either

- $d(x, \operatorname{lnv}(G)) \leqslant 2$, or

■ $G=\mathrm{M}_{23},|x|=23$ and $d(x, \operatorname{lnv}(G))=3$.

Involution distance

Our approach yields the following result.

Theorem. If $R(G)=1$ and $1 \neq x \in G$, then either

- $d(x, \operatorname{lnv}(G)) \leqslant 2$, or

■ $G=\mathrm{M}_{23},|x|=23$ and $d(x, \operatorname{lnv}(G))=3$.

Suppose $G=\mathrm{M}_{23}$ and $|x|=23$. Let $B_{r}(x)$ be the ball of radius r at x.
■ $H=N_{G}(\langle x\rangle)=C_{23}: C_{11}$ is the unique maximal subgroup of G containing x, so $B_{1}(x)=H^{\#}=\{y \in H: y \neq 1\}$.

Involution distance

Our approach yields the following result.

Theorem. If $R(G)=1$ and $1 \neq x \in G$, then either
■ $d(x, \operatorname{lnv}(G)) \leqslant 2$, or
■ $G=\mathrm{M}_{23},|x|=23$ and $d(x, \operatorname{lnv}(G))=3$.

Suppose $G=\mathrm{M}_{23}$ and $|x|=23$. Let $B_{r}(x)$ be the ball of radius r at x.
■ $H=N_{G}(\langle x\rangle)=C_{23}: C_{11}$ is the unique maximal subgroup of G containing x, so $B_{1}(x)=H^{\#}=\{y \in H: y \neq 1\}$.

■ Suppose $y \in B_{1}(x)$ has order 11 and let J be a maximal subgroup of G containing y. Then $J=C_{23}: C_{11}, \mathrm{M}_{11}$ or M_{22}.

Involution distance

Our approach yields the following result.

Theorem. If $R(G)=1$ and $1 \neq x \in G$, then either

- $d(x, \operatorname{lnv}(G)) \leqslant 2$, or

■ $G=\mathrm{M}_{23},|x|=23$ and $d(x, \operatorname{lnv}(G))=3$.

Suppose $G=\mathrm{M}_{23}$ and $|x|=23$. Let $B_{r}(x)$ be the ball of radius r at x.
■ $H=N_{G}(\langle x\rangle)=C_{23}: C_{11}$ is the unique maximal subgroup of G containing x, so $B_{1}(x)=H^{\#}=\{y \in H: y \neq 1\}$.

■ Suppose $y \in B_{1}(x)$ has order 11 and let J be a maximal subgroup of G containing y. Then $J=C_{23}: C_{11}, \mathrm{M}_{11}$ or M_{22}.

■ If $J=\mathrm{M}_{11}$ or M_{22}, then $N_{J}(\langle y\rangle)=C_{11}: C_{5}$ is the only maximal soluble subgroup of J containing y, so $\left\{|z|: z \in B_{2}(x)\right\}=\{5,11,23\}$.

First reductions

Lemma. Let G be a finite insoluble group. Then

- $\Gamma_{\mathcal{S}}(G)$ is connected iff $\Gamma_{\mathcal{S}}(G / R(G))$ is connected.

■ In addition, $d_{\mathcal{S}}(G)=d_{\mathcal{S}}(G / R(G))$.
Proof. $\langle x, y\rangle \leqslant G$ is soluble iff $\langle x R(G), y R(G)\rangle \leqslant G / R(G)$ is soluble.

First reductions

Lemma. Let G be a finite insoluble group. Then
■ $\Gamma_{\mathcal{S}}(G)$ is connected iff $\Gamma_{\mathcal{S}}(G / R(G))$ is connected.
■ In addition, $d_{\mathcal{S}}(G)=d_{\mathcal{S}}(G / R(G))$.
Proof. $\langle x, y\rangle \leqslant G$ is soluble iff $\langle x R(G), y R(G)\rangle \leqslant G / R(G)$ is soluble.

Theorem. Suppose G is insoluble, but not almost simple.
Then $\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leqslant 3$.

First reductions

Lemma. Let G be a finite insoluble group. Then
$\square \Gamma_{\mathcal{S}}(G)$ is connected iff $\Gamma_{\mathcal{S}}(G / R(G))$ is connected.
■ In addition, $d_{\mathcal{S}}(G)=d_{\mathcal{S}}(G / R(G))$.
Proof. $\langle x, y\rangle \leqslant G$ is soluble iff $\langle x R(G), y R(G)\rangle \leqslant G / R(G)$ is soluble.

Theorem. Suppose G is insoluble, but not almost simple.
Then $\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leqslant 3$.

■ We may assume $R(G)=1$. Suppose $\operatorname{soc}(G)=N_{1} \times \cdots \times N_{k}$, where $k \geqslant 2$ and each N_{i} is a non-abelian minimal normal subgroup of G.

First reductions

Lemma. Let G be a finite insoluble group. Then
■ $\Gamma_{\mathcal{S}}(G)$ is connected iff $\Gamma_{\mathcal{S}}(G / R(G))$ is connected.
■ In addition, $d_{\mathcal{S}}(G)=d_{\mathcal{S}}(G / R(G))$.
Proof. $\langle x, y\rangle \leqslant G$ is soluble iff $\langle x R(G), y R(G)\rangle \leqslant G / R(G)$ is soluble.

Theorem. Suppose G is insoluble, but not almost simple.
Then $\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leqslant 3$.

■ We may assume $R(G)=1$. Suppose $\operatorname{soc}(G)=N_{1} \times \cdots \times N_{k}$, where $k \geqslant 2$ and each N_{i} is a non-abelian minimal normal subgroup of G.

■ If $1 \neq x, y \in G$, then there exist nontrivial $s \in N_{1}, t \in N_{2}$ such that $[x, s]=[y, t]=1$, so $x \sim s \sim t \sim y$ is a path in $\Gamma_{\mathcal{S}}(G)$.

First reductions

Lemma. Let G be a finite insoluble group. Then
$\square \Gamma_{\mathcal{S}}(G)$ is connected iff $\Gamma_{\mathcal{S}}(G / R(G))$ is connected.
■ In addition, $d_{\mathcal{S}}(G)=d_{\mathcal{S}}(G / R(G))$.
Proof. $\langle x, y\rangle \leqslant G$ is soluble iff $\langle x R(G), y R(G)\rangle \leqslant G / R(G)$ is soluble.

Theorem. Suppose G is insoluble, but not almost simple.
Then $\Gamma_{\mathcal{S}}(G)$ is connected and $d_{\mathcal{S}}(G) \leqslant 3$.

- We may assume $R(G)=1$. Suppose $\operatorname{soc}(G)=N_{1} \times \cdots \times N_{k}$, where $k \geqslant 2$ and each N_{i} is a non-abelian minimal normal subgroup of G.

■ If $1 \neq x, y \in G$, then there exist nontrivial $s \in N_{1}, t \in N_{2}$ such that $[x, s]=[y, t]=1$, so $x \sim s \sim t \sim y$ is a path in $\Gamma_{\mathcal{S}}(G)$.

■ This leaves the monolithic case $(\operatorname{soc}(G)=T \times \cdots \times T, T$ simple $)$.

Symmetric groups

Theorem. Let $G=S_{n}$ with $n \geqslant 6$.
Then $d_{\mathcal{S}}(G)=3$ and $d(x, \operatorname{lnv}(G)) \leqslant 1$ for all $1 \neq x \in G$.

Symmetric groups

Theorem. Let $G=S_{n}$ with $n \geqslant 6$.
Then $d_{\mathcal{S}}(G)=3$ and $d(x, \operatorname{lnv}(G)) \leqslant 1$ for all $1 \neq x \in G$.

■ Each $x \in G$ is real, so $\left|N_{G}(\langle x\rangle)\right|$ is even and thus $d_{\mathcal{S}}(G) \leqslant 3$.

Symmetric groups

Theorem. Let $G=S_{n}$ with $n \geqslant 6$.
Then $d_{\mathcal{S}}(G)=3$ and $d(x, \operatorname{lnv}(G)) \leqslant 1$ for all $1 \neq x \in G$.

■ Each $x \in G$ is real, so $\left|N_{G}(\langle x\rangle)\right|$ is even and thus $d_{\mathcal{S}}(G) \leqslant 3$.

- Suppose $n \geqslant 7$ is a prime. Let $x \in G$ be an n-cycle.

Symmetric groups

Theorem. Let $G=S_{n}$ with $n \geqslant 6$.
Then $d_{\mathcal{S}}(G)=3$ and $d(x, \operatorname{lnv}(G)) \leqslant 1$ for all $1 \neq x \in G$.

■ Each $x \in G$ is real, so $\left|N_{G}(\langle x\rangle)\right|$ is even and thus $d_{\mathcal{S}}(G) \leqslant 3$.

- Suppose $n \geqslant 7$ is a prime. Let $x \in G$ be an n-cycle.

Then $H=N_{G}(\langle x\rangle)=C_{n}: C_{n-1}$ is the unique maximal soluble subgroup of G containing x, so

$$
B_{1}(x)=\left\{y \in G^{\#}:\langle x, y\rangle \text { is soluble }\right\}=H^{\#} .
$$

Symmetric groups

Theorem. Let $G=S_{n}$ with $n \geqslant 6$.
Then $d_{\mathcal{S}}(G)=3$ and $d(x, \operatorname{lnv}(G)) \leqslant 1$ for all $1 \neq x \in G$.

■ Each $x \in G$ is real, so $\left|N_{G}(\langle x\rangle)\right|$ is even and thus $d_{\mathcal{S}}(G) \leqslant 3$.

- Suppose $n \geqslant 7$ is a prime. Let $x \in G$ be an n-cycle.

Then $H=N_{G}(\langle x\rangle)=C_{n}: C_{n-1}$ is the unique maximal soluble subgroup of G containing x, so

$$
B_{1}(x)=\left\{y \in G^{\#}:\langle x, y\rangle \text { is soluble }\right\}=H^{\#} .
$$

By B, Guralnick \& Saxl (2011), there exists $g \in G$ with $H \cap H^{g}=1$, hence $B_{1}(x) \cap B_{1}\left(x^{g}\right)=\emptyset$ and thus $d\left(x, x^{g}\right) \geqslant 3$.

Alternating groups

Theorem. Let $G=A_{n}$ with $n \geqslant 6$.
■ We have $3 \leqslant d_{\mathcal{S}}(G) \leqslant 5$.
■ $d_{\mathcal{S}}(G) \geqslant 4$ only if $n \in\{p, p+1\}$ for a prime $p \equiv 3(\bmod 4)$.

- $d_{\mathcal{S}}(G) \geqslant 4$ if $n=2 p+1$ and $p \geqslant 5$ are primes.

Alternating groups

Theorem. Let $G=A_{n}$ with $n \geqslant 6$.
■ We have $3 \leqslant d_{\mathcal{S}}(G) \leqslant 5$.
■ $d_{\mathcal{S}}(G) \geqslant 4$ only if $n \in\{p, p+1\}$ for a prime $p \equiv 3(\bmod 4)$.

- $d_{\mathcal{S}}(G) \geqslant 4$ if $n=2 p+1$ and $p \geqslant 5$ are primes.

Suppose $n=2 p+1$ and $p \geqslant 5$ are primes. We use a counting argument to prove the existence of n-cycles $x, y \in G$ with $d(x, y) \geqslant 4$.

Alternating groups

Theorem. Let $G=A_{n}$ with $n \geqslant 6$.
■ We have $3 \leqslant d_{\mathcal{S}}(G) \leqslant 5$.

- $d_{\mathcal{S}}(G) \geqslant 4$ only if $n \in\{p, p+1\}$ for a prime $p \equiv 3(\bmod 4)$.
- $d_{\mathcal{S}}(G) \geqslant 4$ if $n=2 p+1$ and $p \geqslant 5$ are primes.

Suppose $n=2 p+1$ and $p \geqslant 5$ are primes. We use a counting argument to prove the existence of n-cycles $x, y \in G$ with $d(x, y) \geqslant 4$.

Let \mathcal{A} be the set of n-cycles in G and fix $x \in \mathcal{A}$. It suffices to show that

$$
\left|\mathcal{A} \cap B_{3}(x)\right|=1+\alpha_{1}+\alpha_{2}+\alpha_{3}<|\mathcal{A}|
$$

where $\alpha_{k}=|\{y \in \mathcal{A}: d(x, y)=k\}|$.

Sporadic groups

Theorem. Let G be an almost simple sporadic group with socle T.
■ We have $3 \leqslant d_{\mathcal{S}}(G) \leqslant 5$.

- $d_{\mathcal{S}}(G) \geqslant 4$ only if $G=T$.

■ $d_{\mathcal{S}}(G)=4$ if $G=\mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{23}, \mathrm{M}_{24}, \mathrm{HS}$ or J_{3}.
$\square d_{\mathcal{S}}(G) \geqslant 4$ if $G=\mathrm{Co}_{2}, \mathrm{Co}_{3}, \mathrm{McL}$ or \mathbb{B}.

Sporadic groups

Theorem. Let G be an almost simple sporadic group with socle T.
■ We have $3 \leqslant d_{\mathcal{S}}(G) \leqslant 5$.

- $d_{\mathcal{S}}(G) \geqslant 4$ only if $G=T$.

■ $d_{\mathcal{S}}(G)=4$ if $G=\mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{23}, \mathrm{M}_{24}, \mathrm{HS}$ or J_{3}.
■ $d_{\mathcal{S}}(G) \geqslant 4$ if $G=\mathrm{Co}_{2}, \mathrm{Co}_{3}, \mathrm{McL}$ or \mathbb{B}.

The proof relies heavily on computational methods (using Magma). e.g. If $G=H S$ and $|x|=11$, then $H=N_{G}(\langle x\rangle)=C_{11}: C_{5}, B_{1}(x)=H^{\#}$.

Sporadic groups

Theorem. Let G be an almost simple sporadic group with socle T.
■ We have $3 \leqslant d_{\mathcal{S}}(G) \leqslant 5$.

- $d_{\mathcal{S}}(G) \geqslant 4$ only if $G=T$.

■ $d_{\mathcal{S}}(G)=4$ if $G=\mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{23}, \mathrm{M}_{24}, \mathrm{HS}$ or J_{3}.
■ $d_{\mathcal{S}}(G) \geqslant 4$ if $G=\mathrm{Co}_{2}, \mathrm{Co}_{3}, \mathrm{McL}$ or \mathbb{B}.

The proof relies heavily on computational methods (using Magma). e.g. If $G=H S$ and $|x|=11$, then $H=N_{G}(\langle x\rangle)=C_{11}: C_{5}, B_{1}(x)=H^{\#}$.

By random search, there exists $g \in G$ such that $B_{1}(x) \cap B_{1}\left(x^{g}\right)=\emptyset$ and $\langle a, b\rangle \notin \mathcal{S}$ for all $a \in B_{1}(x), b \in B_{1}\left(x^{g}\right)$, so $d\left(x, x^{g}\right) \geqslant 4$.

Two-dimensional linear groups

The groups with socle $\mathrm{PSL}_{2}(q)$ require special attention.

Two-dimensional linear groups

The groups with socle $\mathrm{PSL}_{2}(q)$ require special attention.

Theorem. If G has socle $\operatorname{PSL}_{2}(q)$, then

$$
d_{\mathcal{S}}(G)= \begin{cases}2 & \text { if } \mathrm{PGL}_{2}(q) \leqslant G \text { or } q \in\{5,7\} \\ 3 & \text { otherwise. }\end{cases}
$$

Two-dimensional linear groups

The groups with socle $\mathrm{PSL}_{2}(q)$ require special attention.

Theorem. If G has socle $\mathrm{PSL}_{2}(q)$, then

$$
d_{\mathcal{S}}(G)= \begin{cases}2 & \text { if } \mathrm{PGL}_{2}(q) \leqslant G \text { or } q \in\{5,7\} \\ 3 & \text { otherwise }\end{cases}
$$

Example. Suppose $G=\mathrm{PGL}_{2}(q)$. If $A=D_{2(q+1)}$ and $B=[q]: C_{q-1}$ then

$$
G=\bigcup_{g \in G} A^{g} \cup \bigcup_{h \in G} B^{h}
$$

Two-dimensional linear groups

The groups with socle $\mathrm{PSL}_{2}(q)$ require special attention.

Theorem. If G has socle $\mathrm{PSL}_{2}(q)$, then

$$
d_{\mathcal{S}}(G)= \begin{cases}2 & \text { if } \mathrm{PGL}_{2}(q) \leqslant G \text { or } q \in\{5,7\} \\ 3 & \text { otherwise }\end{cases}
$$

Example. Suppose $G=\mathrm{PGL}_{2}(q)$. If $A=D_{2(q+1)}$ and $B=[q]: C_{q-1}$ then

$$
G=\bigcup_{g \in G} A^{g} \cup \bigcup_{h \in G} B^{h}
$$

We have $|B|^{2}>|G|,|A||B|>|G|$ and one checks that $A \cap A^{g} \neq 1$ for all $g \in G$. So any two subgroups in the union intersect nontrivially.

Two-dimensional linear groups

The groups with socle $\mathrm{PSL}_{2}(q)$ require special attention.

Theorem. If G has socle $\mathrm{PSL}_{2}(q)$, then

$$
d_{\mathcal{S}}(G)= \begin{cases}2 & \text { if } \mathrm{PGL}_{2}(q) \leqslant G \text { or } q \in\{5,7\} \\ 3 & \text { otherwise }\end{cases}
$$

Example. Suppose $G=\mathrm{PGL}_{2}(q)$. If $A=D_{2(q+1)}$ and $B=[q]: C_{q-1}$ then

$$
G=\bigcup_{g \in G} A^{g} \cup \bigcup_{h \in G} B^{h}
$$

We have $|B|^{2}>|G|,|A||B|>|G|$ and one checks that $A \cap A^{g} \neq 1$ for all $g \in G$. So any two subgroups in the union intersect nontrivially.

Therefore, $B_{1}(x) \cap B_{1}(y) \neq \emptyset$ for all $1 \neq x, y \in G$ and thus $d_{\mathcal{S}}(G)=2$.

Groups of Lie type

Let G be an almost simple group of Lie type over \mathbb{F}_{q} with socle T. Let $B=N_{G}(P)$ be a Borel subgroup of G.

Groups of Lie type

Let G be an almost simple group of Lie type over \mathbb{F}_{q} with socle T. Let $B=N_{G}(P)$ be a Borel subgroup of G.

Lemma. $|B|$ is odd $\Longleftrightarrow T=\operatorname{PSL}_{2}(q)$ and $q \equiv 3(\bmod 4)$.

Groups of Lie type

Let G be an almost simple group of Lie type over \mathbb{F}_{q} with socle T. Let $B=N_{G}(P)$ be a Borel subgroup of G.

Lemma. $|B|$ is odd $\Longleftrightarrow T=\operatorname{PSL}_{2}(q)$ and $q \equiv 3(\bmod 4)$.
Proposition. If $|x|=r$ is an odd prime, then either $d(x, \operatorname{lnv}(G))=1$, or $(T, r) \in \mathcal{L}$ is known (e.g. $T=E_{6}(2)$ and $r=73$).

Groups of Lie type

Let G be an almost simple group of Lie type over \mathbb{F}_{q} with socle T. Let $B=N_{G}(P)$ be a Borel subgroup of G.

Lemma. $|B|$ is odd $\Longleftrightarrow T=\operatorname{PSL}_{2}(q)$ and $q \equiv 3(\bmod 4)$.
Proposition. If $|x|=r$ is an odd prime, then either $d(x, \operatorname{lnv}(G))=1$, or $(T, r) \in \mathcal{L}$ is known (e.g. $T=E_{6}(2)$ and $r=73$).

Theorem. $d(x, \operatorname{lnv}(G)) \leqslant 2$ for all $x \in G^{\#}$, so $d_{\mathcal{S}}(G) \leqslant 5$.

Groups of Lie type

Let G be an almost simple group of Lie type over \mathbb{F}_{q} with socle T. Let $B=N_{G}(P)$ be a Borel subgroup of G.

Lemma. $|B|$ is odd $\Longleftrightarrow T=\mathrm{PSL}_{2}(q)$ and $q \equiv 3(\bmod 4)$.
Proposition. If $|x|=r$ is an odd prime, then either $d(x, \operatorname{lnv}(G))=1$, or $(T, r) \in \mathcal{L}$ is known (e.g. $T=E_{6}(2)$ and $r=73$).

Theorem. $d(x, \operatorname{lnv}(G)) \leqslant 2$ for all $x \in G^{\#}$, so $d_{\mathcal{S}}(G) \leqslant 5$.

Sketch. Let $x \in G^{\#}$ with $z=x^{m}$ of prime order r, so $x \sim z$ and by the proposition we may assume r is odd and $(T, r) \in \mathcal{L}$.

Groups of Lie type

Let G be an almost simple group of Lie type over \mathbb{F}_{q} with socle T. Let $B=N_{G}(P)$ be a Borel subgroup of G.

Lemma. $|B|$ is odd $\Longleftrightarrow T=\operatorname{PSL}_{2}(q)$ and $q \equiv 3(\bmod 4)$.
Proposition. If $|x|=r$ is an odd prime, then either $d(x, \operatorname{lnv}(G))=1$, or $(T, r) \in \mathcal{L}$ is known (e.g. $T=E_{6}(2)$ and $r=73$).

Theorem. $d(x, \operatorname{lnv}(G)) \leqslant 2$ for all $x \in G^{\#}$, so $d_{\mathcal{S}}(G) \leqslant 5$.

Sketch. Let $x \in G^{\#}$ with $z=x^{m}$ of prime order r, so $x \sim z$ and by the proposition we may assume r is odd and $(T, r) \in \mathcal{L}$.

Here $N_{G}(\langle z\rangle)$ is soluble and contains x and an element y of prime order s with $(T, s) \notin \mathcal{L}$. So $x \sim y$ and $d(y, \operatorname{lnv}(G))=1$ by the proposition.

Some open problems

Question. Is there a finite group with $d_{\mathcal{S}}(G)=5$?
Are there infinitely many with $d_{\mathcal{S}}(G) \geqslant 4$?

Some open problems

Question. Is there a finite group with $d_{\mathcal{S}}(G)=5$?
Are there infinitely many with $d_{\mathcal{S}}(G) \geqslant 4$?

We know that the answer to the latter question is yes if there are infinitely many Sophie Germain primes...

Conjecture. If $p \geqslant 11$ is a prime, $p \equiv 3(\bmod 4)$, then $d_{\mathcal{S}}\left(A_{p}\right) \geqslant 4$.

Some open problems

Question. Is there a finite group with $d_{\mathcal{S}}(G)=5$?
Are there infinitely many with $d_{\mathcal{S}}(G) \geqslant 4$?

We know that the answer to the latter question is yes if there are infinitely many Sophie Germain primes...

Conjecture. If $p \geqslant 11$ is a prime, $p \equiv 3(\bmod 4)$, then $d_{\mathcal{S}}\left(A_{p}\right) \geqslant 4$.

Question. $d_{\mathcal{S}}(G) \geqslant 4 \Longrightarrow G$ is simple?

Some open problems

Question. Is there a finite group with $d_{\mathcal{S}}(G)=5$?
Are there infinitely many with $d_{\mathcal{S}}(G) \geqslant 4$?

We know that the answer to the latter question is yes if there are infinitely many Sophie Germain primes...

Conjecture. If $p \geqslant 11$ is a prime, $p \equiv 3(\bmod 4)$, then $d_{\mathcal{S}}\left(A_{p}\right) \geqslant 4$.

Question. $d_{\mathcal{S}}(G) \geqslant 4 \Longrightarrow G$ is simple?

Question. Can we determine the simple groups with $d_{\mathcal{S}}(G)=2$?

Here we can prove that G has to be a classical group. The only known examples are $\mathrm{PSL}_{2}(q)$ with $q \geqslant 4$ even, $\mathrm{PSL}_{3}(2)$ and $\mathrm{PSU}_{4}(2)$.

Generalisations

Let \mathcal{F} be a family of groups (e.g. abelian, soluble, nilpotent, metacyclic, metabelian, etc.) and fix a finite group $G \notin \mathcal{F}$.

Let $\Lambda_{\mathcal{F}}(G)$ be the graph with vertex set G, where $x \sim y$ iff $\langle x, y\rangle \in \mathcal{F}$.

Generalisations

Let \mathcal{F} be a family of groups (e.g. abelian, soluble, nilpotent, metacyclic, metabelian, etc.) and fix a finite group $G \notin \mathcal{F}$.

Let $\Lambda_{\mathcal{F}}(G)$ be the graph with vertex set G, where $x \sim y$ iff $\langle x, y\rangle \in \mathcal{F}$.
Let

$$
\mathcal{U}_{\mathcal{F}}(G)=\{x \in G:\langle x, y\rangle \in \mathcal{F} \text { for all } y \in G\}
$$

be the set of universal vertices in $\Lambda_{\mathcal{F}}(G)$ and let $\Gamma_{\mathcal{F}}(G)$ be the graph with vertices $G \backslash \mathcal{U}_{\mathcal{F}}(G)$, where $x \sim y$ iff $\langle x, y\rangle \in \mathcal{F}$.

Generalisations

Let \mathcal{F} be a family of groups (e.g. abelian, soluble, nilpotent, metacyclic, metabelian, etc.) and fix a finite group $G \notin \mathcal{F}$.

Let $\Lambda_{\mathcal{F}}(G)$ be the graph with vertex set G, where $x \sim y$ iff $\langle x, y\rangle \in \mathcal{F}$.
Let

$$
\mathcal{U}_{\mathcal{F}}(G)=\{x \in G:\langle x, y\rangle \in \mathcal{F} \text { for all } y \in G\}
$$

be the set of universal vertices in $\Lambda_{\mathcal{F}}(G)$ and let $\Gamma_{\mathcal{F}}(G)$ be the graph with vertices $G \backslash \mathcal{U}_{\mathcal{F}}(G)$, where $x \sim y$ iff $\langle x, y\rangle \in \mathcal{F}$.

Some immediate questions:
■ Can we identify $\mathcal{U}_{\mathcal{F}}(G)$?
■ If it is a subgroup, how are $\Gamma_{\mathcal{F}}(G)$ and $\Gamma_{\mathcal{F}}\left(G / \mathcal{U}_{\mathcal{F}}(G)\right)$ related?

Final remarks

Let \mathcal{N} be the family of nilpotent groups and fix a finite group $G \notin \mathcal{N}$.

Final remarks

Let \mathcal{N} be the family of nilpotent groups and fix a finite group $G \notin \mathcal{N}$.
■ $\mathcal{U}_{\mathcal{N}}(G)=Z_{\infty}(G)$, so $\operatorname{diam}\left(\Gamma_{\mathcal{N}}(G)\right)=\operatorname{diam}\left(\Gamma_{\mathcal{N}}\left(G / \mathcal{U}_{\mathcal{N}}(G)\right)\right)$.

Final remarks

Let \mathcal{N} be the family of nilpotent groups and fix a finite group $G \notin \mathcal{N}$.
■ $\mathcal{U}_{\mathcal{N}}(G)=Z_{\infty}(G)$, so $\operatorname{diam}\left(\Gamma_{\mathcal{N}}(G)\right)=\operatorname{diam}\left(\Gamma_{\mathcal{N}}\left(G / \mathcal{U}_{\mathcal{N}}(G)\right)\right)$.

- If $Z_{\infty}(G)=1$, then $\Gamma_{\mathcal{N}}(G)$ and $\Gamma(G)$ have the same connected components, so $\operatorname{diam}\left(\Gamma_{\mathcal{N}}(G)\right) \leqslant 10$ by Morgan \& Parker (2013).

Final remarks

Let \mathcal{N} be the family of nilpotent groups and fix a finite group $G \notin \mathcal{N}$.
■ $\mathcal{U}_{\mathcal{N}}(G)=Z_{\infty}(G)$, so $\operatorname{diam}\left(\Gamma_{\mathcal{N}}(G)\right)=\operatorname{diam}\left(\Gamma_{\mathcal{N}}\left(G / \mathcal{U}_{\mathcal{N}}(G)\right)\right)$.
■ If $Z_{\infty}(G)=1$, then $\Gamma_{\mathcal{N}}(G)$ and $\Gamma(G)$ have the same connected components, so $\operatorname{diam}\left(\Gamma_{\mathcal{N}}(G)\right) \leqslant 10$ by Morgan \& Parker (2013).

Fix a family \mathcal{F} as above.
■ Q1. Is there an absolute constant c such that $\operatorname{diam}\left(\Gamma_{\mathcal{F}}(G)\right) \leqslant c$ for every finite group $G \notin \mathcal{F}$?

Final remarks

Let \mathcal{N} be the family of nilpotent groups and fix a finite group $G \notin \mathcal{N}$.
■ $\mathcal{U}_{\mathcal{N}}(G)=Z_{\infty}(G)$, so $\operatorname{diam}\left(\Gamma_{\mathcal{N}}(G)\right)=\operatorname{diam}\left(\Gamma_{\mathcal{N}}\left(G / \mathcal{U}_{\mathcal{N}}(G)\right)\right)$.

- If $Z_{\infty}(G)=1$, then $\Gamma_{\mathcal{N}}(G)$ and $\Gamma(G)$ have the same connected components, so $\operatorname{diam}\left(\Gamma_{\mathcal{N}}(G)\right) \leqslant 10$ by Morgan \& Parker (2013).

Fix a family \mathcal{F} as above.
■ Q1. Is there an absolute constant c such that $\operatorname{diam}\left(\Gamma_{\mathcal{F}}(G)\right) \leqslant c$ for every finite group $G \notin \mathcal{F}$?

■ Q2. And if we only consider groups with $\mathcal{U}_{\mathcal{F}}(G)=1$?

Final remarks

Let \mathcal{N} be the family of nilpotent groups and fix a finite group $G \notin \mathcal{N}$.
■ $\mathcal{U}_{\mathcal{N}}(G)=Z_{\infty}(G)$, so $\operatorname{diam}\left(\Gamma_{\mathcal{N}}(G)\right)=\operatorname{diam}\left(\Gamma_{\mathcal{N}}\left(G / \mathcal{U}_{\mathcal{N}}(G)\right)\right)$.

- If $Z_{\infty}(G)=1$, then $\Gamma_{\mathcal{N}}(G)$ and $\Gamma(G)$ have the same connected components, so $\operatorname{diam}\left(\Gamma_{\mathcal{N}}(G)\right) \leqslant 10$ by Morgan \& Parker (2013).

Fix a family \mathcal{F} as above.
■ Q1. Is there an absolute constant c such that $\operatorname{diam}\left(\Gamma_{\mathcal{F}}(G)\right) \leqslant c$ for every finite group $G \notin \mathcal{F}$?

■ Q2. And if we only consider groups with $\mathcal{U}_{\mathcal{F}}(G)=1$?
e.g. if $\mathcal{F}=\mathcal{A}$ is the collection of abelian groups, then the answers are no to Q1, but yes to Q2 (with $c=10$).
e.g. if $\mathcal{F}=\mathcal{S}$ or \mathcal{N}, then yes to Q 1 (with $c=5$ or 10 , respectively).

