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Let A4(G) be the graph with vertex set G, where
x~vy <= (x,y) €A <= xy =yx

Let
Ua(G)={x€e G : x~yforally e G} = Z(G)

be the set of universal vertices in A 4(G).

Definition. Let '(G) be the graph with vertices G \ Z(G), where
x ~ y if and only if xy = yx.

This is the commuting graph of G.
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Connectedness
Example. Let G = S,, where p > 3 is a prime.
If x € G is a p-cycle, then Cg(x) = (x) and thus ['(G) is disconnected.

Theorem (lranmanesh & Jafarzadeh, 2008). If n > 3, then I'(S,) is
connected iff n and n — 1 are composite, in which case diam(I'(S,)) < 5.

Theorem (Giudici & Parker, 2013). For any d € N, there exists a
2-group G such that ['(G) is connected and diam('(G)) > d.

Theorem (Morgan & Parker, 2013).
If Z(G) =1, then diam(I'(G)) < 10.

B [t is not known if the upper bound of 10 is best possible, but there
are examples with diam(['(G)) = 8.

W Parker, 2013: If G is soluble and Z(G) = 1, then diam('(G)) < 8.
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The soluble graph

Let S be the collection of finite soluble groups.
Let G be a finite insoluble group with soluble radical R(G).
Let As(G) be the graph with vertex set G, where x ~ y iff (x,y) € S.

Let Us(G) be the set of universal vertices in As(G), so

Us(G)={xe€ G : (x,y) e Sforally € G}

Theorem (Guralnick et al. 2006). Us(G) = R(G)

Definition. Let 's(G) be the graph with vertices G \ R(G), where
x ~ y if and only if (x,y) is soluble.

This is the soluble graph of G.




Example: G = As



Commuting graph of As



Soluble graph of As

1

117

o5
s




Main results

Let G be a finite insoluble group and let ds(G) be the maximal diameter
of a connected component of the soluble graph I's(G).



Main results

Let G be a finite insoluble group and let ds(G) be the maximal diameter
of a connected component of the soluble graph I's(G).

Theorem (B, Lucchini & Nemmi, 2021).
l's(G) is connected and ds(G) < 5.




Main results

Let G be a finite insoluble group and let ds(G) be the maximal diameter
of a connected component of the soluble graph I's(G).

Theorem (B, Lucchini & Nemmi, 2021).
l's(G) is connected and ds(G) < 5.

M There are groups with ds(G) =4, e.g.
Alla A127 PSL5(2)7 PSU5(2)a M127 M227 M237 M247 HS) J37" .

B M, is the smallest group with ds(G) > 4.



Main results

Let G be a finite insoluble group and let ds(G) be the maximal diameter
of a connected component of the soluble graph I's(G).

Theorem (B, Lucchini & Nemmi, 2021).
l's(G) is connected and ds(G) < 5.

M There are groups with ds(G) =4, e.g.
Alla A127 PSL5(2)7 PSU5(2)a M127 M227 M237 M247 HS) J37" .
B M, is the smallest group with ds(G) > 4.

B ds(G) >4 = G is almost simple (i.e. T <G < Aut(T))



Main results

Let G be a finite insoluble group and let ds(G) be the maximal diameter
of a connected component of the soluble graph I's(G).

Theorem (B, Lucchini & Nemmi, 2021).
l's(G) is connected and ds(G) < 5.

M There are groups with ds(G) =4, e.g.

A11, A1z, PSLs(2), PSUs5(2), M12, Maa, Moz, Maa, HS, Js, ...
B M, is the smallest group with ds(G) > 4.
B ds(G) >4 = G is almost simple (i.e. T <G < Aut(T))

B There are infinitely many simple groups with ds(G) = 2.
e.g. G = PSLa(q) with g > 4 even.
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Earlier work

Theorem (Akbari, Lewis, Mirzajani & Moghaddamfar, 2020).
['s(G) is connected and ds(G) < 11.

Question (ALMM): Are there any groups with ds(G) > 4?7

Suppose R(G) =1 and let Inv(G) be the set of involutions in G.
ALMM: d(x,Inv(G)) <5 forall 1 # x € G, so ds(G) < 11.

The vertices of the soluble prime graph MN¢(G) are the prime divisors of
|G|, with p ~ q iff G has a soluble subgroup of order divisible by pgq.
The following result is a key ingredient in ALMM (it relies on CFSG):

Hagie (2000): IM,(G) is connected and d(2, p) < 3 for any prime p.
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Involution distance

Our approach yields the following result.

Theorem. If R(G) =1 and 1 # x € G, then either
B d(x,Inv(G)) <2, or
B G = Mys, |x|] =23 and d(x,Inv(G)) = 3.

Suppose G = Mp3 and |x| = 23. Let B,(x) be the ball of radius r at x.

B H = Ng({x)) = Co3:Cy1 is the unique maximal subgroup of G
containing x, so Bi(x) = H* = {y € H : y #1}.

B Suppose y € Bi(x) has order 11 and let J be a maximal subgroup of
G containing y. Then J = (3:Ci1, M11 or Moo,

W If J = Mj; or My, then Ny({y)) = Ci11:Gs is the only maximal soluble
subgroup of J containing y, so {|z| : z € Bx(x)} = {5,11,23}.
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First reductions

Lemma. Let G be a finite insoluble group. Then
B [5(G) is connected iff [s(G/R(G)) is connected.
B In addition, ds(G) = ds(G/R(G)).

Proof. (x,y) < G is soluble iff (xR(G), yR(G)) < G/R(G) is soluble.
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First reductions

Lemma. Let G be a finite insoluble group. Then
B [5(G) is connected iff [s(G/R(G)) is connected.
B In addition, ds(G) = ds(G/R(G)).

Proof. (x,y) < G is soluble iff (xR(G),yR(G)) < G/R(G) is soluble. [

Theorem. Suppose G is insoluble, but not almost simple.
Then 's(G) is connected and ds(G) < 3.

B We may assume R(G) = 1. Suppose soc(G) = Nj x --- x N, where
k > 2 and each N; is a non-abelian minimal normal subgroup of G.

B If 1 # x,y € G, then there exist nontrivial s € N1, t € N5 such that
[x,s] =[y,t] =1, s0o x ~s~t~yisa pathin [5(G).

B This leaves the monolithic case (soc(G) =T x --- x T, T simple). u
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Symmetric groups

Theorem. Let G = S, with n > 6.
Then ds(G) =3 and d(x,Inv(G)) < 1forall1#x € G.

B Each x € G is real, so |Ng((x))| is even and thus ds(G) < 3.

B Suppose n > 7 is a prime. Let x € G be an n-cycle.

Then H = Ng((x)) = C»:Cp—1 is the unique maximal soluble
subgroup of G containing x, so

Bi(x) = {y € G¥ : (x,y) is soluble} = H#.

By B, Guralnick & Saxl (2011), there exists g € G with
H N H& =1, hence Bi(x) N B1(x&) = ) and thus d(x, x&) > 3.
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Theorem. Let G = A, with n > 6.
B We have 3 < ds(G) < 5.

W ds(G) >4 onlyif ne {p,p+1} for a prime p =3 (mod 4).

B ds(G)>4ifn=2p+1and p>5 are primes.

Suppose n =2p+ 1 and p > 5 are primes. We use a counting argument
to prove the existence of n-cycles x,y € G with d(x,y) > 4.

Let A be the set of n-cycles in G and fix x € A. It suffices to show that
AN B3(x)| =1+ a1+ ax+ az < |A|,
where ay = |[{y € A : d(x,y) = k}|.

13



Sporadic groups

7

Theorem. Let G be an almost simple sporadic group with socle T.
B We have 3 < ds(G) < 5.
B ds(G)>4onlyifG=T.
B ds(G) =4 if G = Mjy, My, Mas, Maa, HS or Js.
B ds(G) > 4 if G = Cop, Cosz, McL or B.
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Theorem. Let G be an almost simple sporadic group with socle T.
B We have 3 < ds(G) < 5.
B ds(G)>4onlyifG=T.
B ds(G) =4 if G = Mjy, My, Mas, Maa, HS or Js.

B ds(G) > 4 if G = Cop, Cosz, McL or B.

\.

The proof relies heavily on computational methods (using Magma).
e.g. If G=HS and |x| = 11, then H = Ng({x)) = C11:Cs, Bi(x) = H7.

By random search, there exists g € G such that Bi(x) N B1(x€¢) = () and
(a,b) ¢ S for all a € Bi(x), b € Bi(x®), so d(x, x&) > 4.
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Two-dimensional linear groups

The groups with socle PSL,(q) require special attention.

Theorem. If G has socle PSLy(g), then

[ 2 ifPGLa(q) < Gorqge {57}
ds(G) = { 3 otherwise.

Example. Suppose G = PGLa(q). If A= Dy(g41) and B = [q]:C4—1 then
G=|JAulB"
geai heG

We have |B|? > |G|, |A||B| > |G| and one checks that AN A& # 1 for all
g € G. So any two subgroups in the union intersect nontrivially.

Therefore, Bi(x) N Bi(y) # 0 for all 1 # x,y € G and thus ds(G) = 2.

15
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Let G be an almost simple group of Lie type over F; with socle T. Let
B = Ng(P) be a Borel subgroup of G.

Lemma. |B|is odd <= T = PSL(q) and g = 3 (mod 4).

Proposition. If |x| = r is an odd prime, then either d(x,Inv(G)) =1, or
(T,r) € Lis known (e.g. T = Eg(2) and r = 73).

Theorem. d(x,Inv(G)) < 2 for all x € G¥, so ds(G) < 5.

Sketch. Let x € G7 with z = x™ of prime order r, so x ~ z and by the
proposition we may assume r is odd and (T,r) € L.

Here Ng((z)) is soluble and contains x and an element y of prime order s
with (T,s) € L. So x ~ y and d(y, Inv(G)) = 1 by the proposition. O]
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Some open problems

Question. Is there a finite group with ds(G) = 57
Are there infinitely many with ds(G) > 47

We know that the answer to the latter question is yes if there are infinitely
many Sophie Germain primes...

Conjecture. If p > 11 is a prime, p = 3 (mod 4), then ds(Ap) > 4.

7

Question. ds(G) >4 = G is simple?

Question. Can we determine the simple groups with ds(G) = 27?

Here we can prove that G has to be a classical group. The only known
examples are PSLy(q) with g > 4 even, PSL3(2) and PSU4(2).
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Generalisations

Let F be a family of groups (e.g. abelian, soluble, nilpotent, metacyclic,
metabelian, etc.) and fix a finite group G & F.

Let Ax(G) be the graph with vertex set G, where x ~ y iff (x,y) € F.
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Generalisations

Let F be a family of groups (e.g. abelian, soluble, nilpotent, metacyclic,
metabelian, etc.) and fix a finite group G & F.

Let Ax(G) be the graph with vertex set G, where x ~ y iff (x,y) € F.

Let
Ur(G)={xe€ G : (x,y) € F forall y € G}

be the set of universal vertices in Ax(G) and let [ #(G) be the graph with
vertices G \ Ur(G), where x ~ y iff (x,y) € F.

Some immediate questions:

B Can we identify Ur(G)?

W If it is a subgroup, how are [#(G) and I =(G/Ux(G)) related?
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Let N be the family of nilpotent groups and fix a finite group G € V.
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Final remarks

Let N be the family of nilpotent groups and fix a finite group G € V.

B Uy (G) = Z(6), so diam(Tx(G)) = diam (T (G /Ur(6))).
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Fix a family F as above.

B Q1. Is there an absolute constant ¢ such that diam(I'£(G)) < ¢ for
every finite group G & F7?
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components, so diam(I'y\7(G)) < 10 by Morgan & Parker (2013).

Fix a family F as above.

B Q1. Is there an absolute constant ¢ such that diam(I'£(G)) < ¢ for
every finite group G & F7?

B Q2. And if we only consider groups with Ur(G) = 17

e.g. if F = A is the collection of abelian groups, then the answers are no
to Q1, but yes to Q2 (with ¢ = 10).

e.g. if F =8 or N, then yes to Q1 (with ¢ =5 or 10, respectively).
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