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Finiteness Conditions

This talk concerns three finiteness conditions on groups:

1 PIn - the polynomial identity property

2 Pn - the permutational property

3 Qn - the rewritable property

with implications
PIn ⇒ Pn ⇒ Qn

We will discuss them in chronological order.
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Polynomial Identity Algebras

Let K be a field and let

F = K〈ζ1, ζ2, ζ3, . . .〉

be the free K-algebra in the noncommuting variables ζ1, ζ2, ζ3, . . ..
A K-algebra R is said to satisfy the polynomial identity

f(ζ1, ζ2, . . . , ζk) ∈ F

if f(r1, r2, . . . , rk) = 0 for all r1, r2, . . . , rk ∈ R. For example, any
commutative algebra satisfies [ζ1, ζ2] = ζ1ζ2 − ζ2ζ1. In general, we think
of polynomial identities as weakened versions of commutativity.
Wagner (1937) observed that if x, y are 2× 2 matrices over K then
[x, y]2 is a scalar matrix and hence M2(K) satisfies [[x, y]2, z].
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Multilinear Identities

The following linearization is due to Kaplansky.

Lemma

If R satisfies a polynomial identity of degree n, then R satisfies a
multilinear identity of degree n, namely one of the form

f(ζ1, ζ2, . . . , ζn) =
∑

σ∈Symn

kσ ζσ(1)ζσ(2) · · · ζσ(n)

with kσ ∈ K and k1 = 1.

If each coefficient kσ is equal to (−1)σ, the sign of σ, then f is the
standard identity sn of degree n and it behaves like the determinant.
In particular if two entries are equal, the function vanishes. From this
it follows easily that if dimK R = n, then R satisfies sn+1.
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The Amitsur-Levitzki Theorem

For matrix rings, one can do better. Recall that the standard
polynomial of degree n is given by

sn(ζ1, ζ2, . . . , ζn) = [ζ1, ζ2, . . . , ζn]

=
∑

σ∈Symn

(−1)σ ζσ(1)ζσ(2) · · · ζσ(n)

and the result of Amitsur and Levitzki (1950) asserts

Theorem

The matrix ring Mn(K) satisfies s2n but no identity of degree strictly
less than 2n.

Indeed, Mn(K) satisfies all sd with d ≥ 2n.
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Polynomial Identity Groups

We say that group G satisfies PIn if its group algebra K[G] satisfies a
polynomial identity of degree n. Of course, this depends somewhat on
the field K. Indeed it follows from linearization that this property only
depends upon the characteristic of K.

Kaplansky (1949) observed that if G has an abelian subgroup A of
finite index n, then K[G] satisfies the standard identity s2n and hence
G satisfies PI2n. We seek a converse of the form: If G satisfies PIn,
then G has an abelian subgroup A of index ≤ f(n).

Assume K has characteristic 0. If n ≤ 5, Amitsur (1961) proved such a
result using central polynomials. Only Wagner’s polynomial (1937) for
2× 2 matrices was known at that time. Since the existence of a
polynomial identity for the group algebra K[G] bounds the “degrees”
of its irreducible representations, Isaacs and I (1964) were able to prove
the general result first by using the character theory of finite groups
and then lifting the result from finite to arbitrary groups.
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Characteristic p > 0

Now let K have characteristic p > 0. M. Smith (1971) in her thesis,
used certain “linear identities” to obtain strong partial results on the
converse. Building on this, and using more group theory, I obtained
the following result (1972).

Theorem

Let K be a field of characteristic p > 0 and assume that the group
algebra K[G] satisfies a polynomial identity of degree n. Then G has a
normal subgroup A of index ≤ a(n) such that its commutator subgroup
A′ is a finite p-group of order ≤ b(n).

A group A whose commutator subgroup A′ is a finite p-group is said to
be p-abelian. The above result actually characterizes groups with PIn
for some n, in characteristic p > 0. Indeed, G is such a group if and
only if it has a p-abelian subgroup of finite index.
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The Permutational Property Pn

Following Curzio, Longobardi, Maj and Robinson (1985), a group G is
said to have the permutational property Pn if for all x1, x2, . . . , xn ∈ G
(in that order), there exists a nonidentity permutation π ∈ Symn

(depending on these elements) with x1x2 · · ·xn = xπ(1)xπ(2) · · ·xπ(n).

As they showed, examples can be constructed using

Lemma

If |G : H| = a and H satisfies Pb, then G satisfies Pab.

Lemma

If |G′| = a, then G satisfies Pa+1.
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PIn Implies Pn

Another sufficient condition is

Lemma

If G satisfies PIn for any field K, then it satisfies Pn.

Indeed, suppose K[G] satisfies a polynomial identity of degree n. Then,
via linearization, K[G] satisfies a multilinear polynomial f of the form

f(ζ1, ζ2, . . . , ζn) =
∑

σ∈Symn

kσζσ(1)ζσ(2) · · · ζσ(n)

with coefficient k1 = 1. Now note that if x1, x2, . . . , xn ∈ G, then
f(x1, x2, . . . , xn) = 0, so the identity term in f must be cancelled by at
least one other term.
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The Finite Conjugate Center

Let ∆(G) be the set of elements of group G having finitely many
G-conjugates. This is the F. C. center of G. It is a characteristic
subgroup and the main result of [CLMR] asserts

Theorem

If G satisfies Pn, then |G : ∆(G)| ≤ a(n) and ∆(G)′ is finite.

The latter is the best they can do because |∆(G)′| is not bounded by a
function of n. For example, if G is a finite dihedral group, then G has
an abelian subgroup of index 2, so it satisfies P4. Furthermore,
G = ∆(G) and G′ can be arbitrarily large.
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Classes of Bounded Size

Notice that the previous result offers no information on finite groups.
To sharpen it, we return to the old PI techniques. Some of the
methods used there are listed below.

Let ∆k(G) be the set of all elements of G having ≤ k conjugates. Note
that ∆r(G)∆s(G) ⊆ ∆rs(G) and ∆r(G)−1 = ∆r(G). Of course these
subsets are not necessarily subgroups. The following was proved by
Wiegold (1957).

Theorem

Let G be a group and let k be an integer.

1 If |G′| ≤ k, then G = ∆k(G).

2 If G = ∆k(G), then |G′| ≤ (k4)k
4
.

Part (2) above was a conjecture of B. H. Neumann (1954), of course
without the particular bound.
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Subsets of Finite Index

Since ∆r(G) is not a subgroup, one has to deal with subsets of G. We
say a subset T of G has index ≤ k if there exist group elements
x1, x2, . . . , xk with

⋃k
1 Txi = G. This is not right-left symmetric. For

example, if G = 〈x, y | y2 = 1, xy = x−1〉 is the infinite dihedral group
and if S = {xn, x−ny | n ≥ 0}, then G = S ∪ Sy, but yS = S easily
implies that G cannot be written as a finite union of left cosets of S.

Lemma

If |G : T | ≤ k and T ∗ = T ∪ 1 ∪ T−1, then (T ∗)4
k

is a subgroup of G.

Lemma

Suppose H1, H2, . . . ,Hk are subgroups of G and set S =
⋃k

1Hixi.

1 If S = G, then |G : Hi| ≤ k for some i.

2 If S 6= G. then there exist gj for 1 ≤ j ≤ (k + 1)! with
⋂
j Sgj = ∅.

In particular, if S ∪ T = G, then |G : T | ≤ (k + 1)!.
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Characterization of Pn-Groups

Combining the above methods with the work of [CLMR], my student
Mustafa Elashiry and I obtained the following result (2011).

Theorem

Let G be a group satisfying the permutational property Pn and set
k = n!. Then we have

1 |G : ∆k(G)| ≤ k·(k + 1)!, and

2 G has a characteristic subgroup N = 〈∆k〉 with |G : N | ≤ k·(k+ 1)!
and with |N ′| finite and bounded by a function of n.

The latter bound is big. Set l = k·(k + 1)!. Then

N = (∆k(G))4
l ⊆ ∆m(G) where m = k4

l
. So N = ∆m(N) and hence

|N ′| ≤ (m4)m
4
.
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The Rewritable Property Qn

Following R. D. Blyth (1988), we say that a group G satisfies the
rewritable property Qn if for all x1, x2, . . . , xn ∈ G (in that order) there
exist distinct permutations σ, τ ∈ Symn, depending on these elements,
with xσ(1)xσ(2) · · ·xσ(n) = xτ(1)xτ(2) · · ·xτ(n). Obviously

Lemma

If G satisfies Pn, then it satisfies Qn.

Lemma

If |G′| < n!, then G satisfies Qn.

Recall, if |G′| ≤ n− 1 then G satisfies Pn. Are these properties the
same or just similar?
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Examples and Blyth’s Theorem

G = Sym3 satisfies Q3 but not P3. Q3 follows from the previous
lemma. For P3, notice that the product (1 2 3)·(2 3)·(1 3 2) = (1 2) is
not equal to any other permuted product. Blyth has a generalization of
this with Gn a cyclic group of odd order acted on by a cyclic 2-group.
These groups have property Qn but not Pn for all n ≥ 3. We will
discuss other examples later on.

Theorem

If G satisfies Qn, then |G : ∆(G)| ≤ a(n) and ∆(G)′ is finite.

Obviously this is similar to the Pn result. But the proof is surprisingly
much more difficult and uses a really neat trick. Fortunately, Blyth’s
trick can be merged with the PI techniques to yield another result with
my student Elashiry.
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Characterization of Qn-Groups

Theorem

Let G be a group satisfying the rewritable property Qn. Then there
exist functions k, l and m of n with

1 |G : ∆k(G)| ≤ l, and

2 G has a characteristic subgroup N = 〈∆k〉 with |G : N | ≤ l and
with |N ′| ≤ m.

Corollary

If G is a group satisfying the rewritable property Qn, then G satisfies
the permutational property Pc for some function c of n.

The bounds here are big. For example, k, l and c are determined via

j = n!, p = j2, q = p·2p, k = j·qp, l = k·(k + 1)!, c = (m+ 1)l
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The Rewritable Degree

Note that Pn ⇒ Pn+1 and Qn ⇒ Qn+1. Thus for any group G with
either property it makes sense to define the permutational degree by
p(G) = min{n | G has Pn} and the rewritable degree by
q(G) = min{n | G has Qn}.

Lemma

q(Symn) = n for all n ≥ 2.

This follows since G = Symn has |G′| = n!/2 < n! so G satisfies Qn. On
the other hand, by considering the n− 1 transpositions
(1 2), (1 3), . . . , (1n) we see that G does not satisfy Qn−1. In particular
for any n ≥ 2 there exists a finite group Gn with q(Gn) = n.
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The Permutational Degree

Much more difficult is

Proposition

p(Symn) ≥ n+ 1 for all n ≥ 3.

Thus we see that the properties Pn and Qn are definitely different. We
are left with the seemingly difficult combinatorial problem of
determining p(Symn).

Proposition

For every integer n ≥ 2 there exists a finite solvable group Gn with
p(Gn) = n.
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Finite Groups

If G is finite, an upper bound for p(G) can be obtained from the
degrees of its irreducible complex representations. Let d(G) ≤

√
|G|

denote the largest such degree.

Lemma

If G is a finite group, then p(G) ≤ 2d(G) ≤ 2
√
|G|.

To see this, note that the complex group algebra C[G] is a direct sum
of various Md(C) for suitable degrees d ≤ d(G). The Amitsur-Levitzki
Theorem now implies that each of these direct summands satisfies the
standard identity s2d(G) and hence the same is true for C[G]. Thus G

satisfies P2d(G). Question: Can the inequality p(G) ≤ 2
√
|G| be proved

without representation theory and how sharp is it?
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